Skip to main content
×
×
Home

Sensor-based, time-critical mobility of autonomous robots in cluttered spaces: a harmonic potential approach

  • Ahmad A. Masoud (a1) and Ali Al-Shaikhi (a1)
Summary

This paper suggests an integrated navigation system for an unmanned ground vehicle operating in an unknown cluttered environment. The navigator supports time-critical mobility making it possible for a mobile robot to reach a target from the first attempt without the need for a dedicated exploration and mapping stage. The robot only uses necessary and sufficient egocentric local sensory data collected on its way to the target. The construction of the navigation structure revolves around key properties of the harmonic potential field approach to motion planning. The robot's trajectory is well-behaved and direct-to-the-goal. It contains only the minimum number of detours necessary to accommodate the sensory data and maintain the robot in a safe, goal-oriented state. The navigation structure is developed and its theoretical basis is explained. Extensive experimental validation of its properties and performance is carried-out using the X80 robotic platform.

Copyright
Corresponding author
*Corresponding author. E-mail: masoud@kfupm.edu.sa
References
Hide All
1. Stormont, D. P. and Allan, V. H., “Managing risk in disaster scenarios with autonomous robots,” Syst., Cybern. Inform. 7 (4), 6671 (2009).
2. Woods, D. D., Tittle, J., Feil, M. and Roesler, A., “Envisioning human-robot coordination in future operations,” IEEE Trans. Syst., Man, Cybern. C: Appl. Rev. 34 (2), 210–218 (May 2004).
3. Murphy, R., Disaster Robotics, (The MIT Press, Cambridge, MA, Feb. 2014), ISBN: 9780262027359.
4. Jones, H. L., Rock, S. M., Burns, D. and Morris, S., “Autonomous Robots in SWAT Applications: Research, Design, and Operations Challenges,” Proceedings of the 2002 Symposium for the Association of Unmanned Vehicle Systems International (AUVSI '02), Orlando, Florida (Jul. 2002).
5. Kulich, M., Stopan, P. and Preucil, L., “Knowledge acquisition for mobile robot environment mapping,” In: Database and Expert Systems Applications, Lecture Notes in Computer Science (NBench-Capon, T., Soda, G., and Tjoa, A. M., eds.), vol. 1677, (1999), pp. 123–134.
6. Castejo, C., Boada, B., Blanco, D. and Moreno, L., “Traversable region modeling for outdoor navigation,” J. Intell. Robot. Syst. 43, 175216 (2005).
7. Wooden, D., “A guide to vision-based map building,” IEEE Robot. Autom. Mag. 13 (2), 94–98 (Jun. 2006).
8. Feng, L., Borenstein, J. and Everett, B., “Where am I? Sensors and Methods for Autonomous Mobile Robot Localization.” Tech. Rep., The University of Michigan UM-MEAM-94-21, (Dec. 1994).
9. Goerzen, C., Kong, Z. and Mettler, B., “A survey of motion planning algorithms from the perspective of autonomous UAV guidance,” J. Intell. Robot. Syst.: Theory Appl. 57 (1–4), 65100 (2010).
10. Rao, N., Kareti, S., Shi, W. and Iyengar, S., “Robot Navigation in Unknown Terrains: Introductory Survey of Non-Heuristic Algorithms,” Tech. Rep., Oak Ridge National Laboratory ORNL/TM-12410, (Jul. 1993).
11. Campion, G., Bastin, G. and D'Andrea-Novel, B., “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots,” IEEE Trans. Robot. Autom. 12 (1), 4762 (1996).
12. Campion, G., 'Andrea-Novel, B. and Bastin, G., “Controllability and state feedback stabilizability of non holonomic mechanical systems,” In: Advanced Robot Control, Lecture Notes in Control and Information Sciences (Canudas de Wit, C., ed.), vol. 162, (1991), pp. 106–124.
13. von Neumann, J., “Probabilistic logics and synthesis of reliable organisms from unreliable components,” In: Automata Studies (Shannon, C. and McCarthy, J., eds.) (Princeton University Press, Princeton, New Jersey, USA, 1956) pp. 4398.
14. Christoforos, H., “Coding Approaches to Fault Tolerance in Combinational and Dynamic Systems,” In: The Springer International Series in Engineering and Computer Science, vol. 660, (Springer, USA, 2002), DOI 10.1007/978-1-4615-0853-3.
15. Rodney, A. Brooks, “Intelligence Without Reason,” Proceeding of the 12th International Joint Conference on Artificial Intelligence (IJCAI '91), vol. 1, (1991) pp. 569–595.
16. Brooks, R. A., “A robust layered control system for a mobile robot,” IEEE J. Robot. Autom. 2 (1), 1423 (Mar. 1986) also MIT AI Memo 864, September 1985.
17. Vamvoudakis, K. G. and Antsaklis, P. J., “Autonomy and Machine Intelligence in Complex Systems: A Tutorial,” Proceedings of the American Control Conference Palmer House Hilton, Chicago, IL, USA (Jul. 1–3, 2015) pp. 5062–5097
18. Kortenkamp, D., Bonasso, R. and Murphy, R., Artificial Intelligence and Mobile Robots, (The AAAI Press/The MIT Press, Menlo Park - California, Cambridge - Massachusetts, London - England, 1998).
19. Lumelsky, V. and Skewis, T., “Incorporating range sensing in the robot navigation function,” IEEE Trans. Syst., Man Cybern. 20 (5), 10581069.
20. Lumelsky, V. J. and Stepanov, A. A., “Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape,” Algorithmica 2 (1), 403430 (Nov. 1987).
21. Grisetti, G., Kümmerle, R., Stachniss, C. and Burgard, W., “A tutorial on graph-base SLAM,” IEEE Intell. Transportation Syst. IEEE Mag. 2 (4), 3143 (Winter 2010).
22. Censi, A., Nilsson, A. and Murray, R., “Motion Planning in Observations Space with Learned Diffeomorphism Models,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '13), Karlsruhe, Germany (May 2013) pp. 2860–2867.
23. Masoud, A. A., “A harmonic potential approach for simultaneous planning and control of a generic UAV platform,” from the issue “special volume on unmanned aircraft systems,” J. Intell. Robot. Syst. 65 (1), 153173 (2012).
24. Thrun, S. and Mitchell, T., “Lifelong Robot Learning,” In: The Biology and Technology of Intelligent Autonomous Agents NATO ASI Series (Steels, L., ed.), vol. 144, (1995), pp. 165–196.
25. Stentz, A. and Hebert, M., “A complete navigation system for goal acquisition in unknown environments,” Autonomous Robots 2 (2), 127145 1995.
26. Latombe, J., Robot Motion Planning (Kluwer, Boston, MA, 1991).
27. Dunias, P., “Autonomous Robots Using Artificial Potential Fields,” Ph.D. Thesis (Technische Universiteit: Eindhoven, 1996), ISBN 90-386-0200-6, DOI http://dx.doi.org/10.6100/IR470384.
28. Hwang, Y. and Ahuja, N., “Gross motion planning,” ACM Comput. Surveys 24 (3), 291291 (Sep. 1992).
29. LaValle, S. M., Planning Algorithms. (Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Jul. 2006), ISBN: 9780521862059.
30. Coenen, S. A. M., “Motion Planning for Mobile Robots – A Guide,” M.Sc. Thesis (Eindhoven University of Technology, Department of Mechanical Engineering Control Systems Technology: Eindhoven, Nov. 2012).
31. Farber, Michael, “Topology of Robot Motion Planning,” In: Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology (Biran, P., Cornea, O., Lalonde, F., eds.) vol. 217 of the Series NATO Science Series II: Mathematics, Physics and Chemistry pp. 185–230.
32. Schwartz, J. T. and Sharir, M., “A survey of motion planning and related geometric algorithms,” J. Artif. Intell. – Special Issue Geometric Reasoning 37 (1–3), 157169 (Dec. 1988).
33. Masoud, S. A. and Masoud, A. A., “Constrained motion control using vector potential fields,” IEEE Trans. Syst., Man, Cybern.–-A: Syst. Humans 30 (3), 251272 (May 2000).
34. Masoud, A. A., “A Harmonic Potential Field Approach for Planning Motion of a UAV in a Cluttered Environment with a Drift Field,” Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Hilton Orlando Bonnet Creek Hotel Orlando FL, USA (Dec. 12–15, 2011) pp. 7665–7671.
35. Min, B., Cho, D., Lee, S. and Park, Y., “Sonar mapping of a mobile robot considering position uncertainty,” Robot. Comput.-Integrated Manuf. 13 (1), 4149 (Mar. 1997).
36. Sheldon, A., Paul, B. and Ramey, W., “Harmonic Function Theory,” Gradate Texts in Mathematics (Springer, Springer-Verlag, New York, Inc., 2001), ISBN 978-1-4757-8137-3.
37. McClelland, J. L., Rumelhart, D. E. and the PDP Research Group. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 2: Psychological and Biological Models (The MIT Press, Cambridge - MA, London - England, 1986).
38. Rumelhart, D. E., McClelland, J. L. and the PDP Research Group Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations (The MIT Press, Cambridge - MA, London - England, 1986).
39. Miguel-Toméa, S. and Fernández-Caballero, A., “On the identification and establishment of topological spatial relations by autonomous systems,” Connection Science Archive 26 (3), 261292 (Sep. 2014).
40. Keymeulen, D. and Decuyper, J., “A reactive robot navigation system based on a fluid dynamics metaphor,” Artif. Intell. Lab., Vrije Univ. Brussel, Brussels, Belgium, AI MEMO # 90-5, 1990
41. Keymeulen, D. and Decuyper, J., “The Fluid Dynamics Applied to Mobile Robot Motion: The Stream Field Method,” Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA (May 8–13) pp. 378–85
42. Louste, C. and Liégeois, A., “Path planning for non-holonomic vehicles: A potential viscous fluid field method,” Robotica 20, 291298 (2002). DOI: 10.1017/S0263574701003691
43. Tarassenko, I. and Blake, A., “Analogue Computation of Collision- Free Paths,” Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA (Apr. 1991) pp. 540–545.
44. Prassler, E., “Electrical Networks and a Connectionist Approach to Pathfinding,” In: Connectionism in Perspective, (Pfeifer, R., Schreter, Z., Fogelman, F. and Steels, L., eds.) (Elsevier, North-Holland, Amsterdam, 1989) pp. 421428.
45. Masoud, A. A., Masoud, S. A. and Bayoumi, M. M., “Robot Navigation Using a Pressure Generated Mechanical Stress Field: “The Biharmonic Potential Approach,” Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, San Diego, CA, (May 8–13, 1994) pp. 124–129, DOI: 10.1109/ROBOT.1994.351000
46. Connolly, C., Weiss, R. and Burns, J., “Path Planning Using Laplace Equation,” Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH (May 13–18, 1990) pp. 2102–2106.
47. Masoud, A, A., “Evolutionary Action Maps for Navigating a Robot in an Unknown, Multidimensional, Stationary Environment, Part II: Implementation and Results,” Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico (Apr. 1997) pp. 2090–2096.
48. Keymeulen, D. and Decuyper, J., “The Stream Field Method Applied to Mobile Robot Navigation: A Topological Perspective,” Proceedings of 11th European Conference on Artificial Intelligence (ECAI '94) (1994), 699–703.
49. Ahmad, A. Masoud, “An Informationally-Open, Organizationally-Closed Control Structure for Navigating a Robot in an Unknown, Stationary Environment,” Proceedings of the IEEE International Symposium on Intelligent Control, Houston, Texas, USA (Oct. 5–8, 2003) pp. 614–619.
50. Masoud, A. A., “Kinodynamic motion planning: A novel type of nonlinear, passive damping forces and advantages,” IEEE Robot. Autom. Mag. 17 (1), 8599 (Mar. 2010).
51. Milnor, J., Morse Theory (Princeton Univ. Press, Princeton, NJ, 1963).
52. Koditschek, D., “Exact Robot Navigation by Means of Potential Functions: Some Topological Considerations,” Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC (Mar. 1987) pp. 1–6.
53. Langton, C., “Artificial Life,” In: Artificial Life SFI Studies in the Science of Complexity, (Langton, C., ed.) (Addison-Wesley, Reading, MA, 1988) pp. 147.
54. Thorn, R., Structural Stability and Morphogenesis (W. A. Benjamin Inc., Advanced Book Program, Reading, Massachusetts, London, Amsterdam, Don Mills, Sydney, Tokyo, 1975).
55. Masoud, S. A. and Masoud, A. A., “Motion planning in the presence of directional and obstacle avoidance constraints using nonlinear anisotropic, harmonic potential fields: A physical metaphor,” IEEE Trans. Syst., Man, Cybern., A: Syst. Humans 32 (6), 705723 (Nov. 2002).
56. Masoud, A. A., “Motion planning with gamma-harmonic potential fields,” IEEE Trans. Aerosp. Electronic Syst. 48 (4), 27862801 (2012).
57. Masoud, A. A., “A Discrete Harmonic Potential Field for Optimum Point-to-Point Routing on a Weighted Graph,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing (Oct. 9–15, 2006) pp. 1779–1784, DOI: 10.1109/IROS.2006.28221.
58. Afzal, W. and Masoud, A. A., “Harmonic Potential-Based Communication-Aware Navigation and Beamforming in Cluttered Spaces with Full Channel-State Information,” IEEE Proceedings of the International Conference on Robotics and Automation (ICRA '17), Singapore (May 29–Jun. 3, 2017) pp. 6198–6203.
59. Sancho-Pradel, D. L. and Saaj, C. M., Senior, “Assessment of Artificial Potential Field Methods for Navigation of Planetary Rovers,” Proceedings of the European Control Conference , Budapest, Hungary (Aug. 23–26, 2009) pp. 3027–3032.
60. Gupta, R. A., Masoud, A. A. and Chow, M.-Y., “A delay-tolerant, potential field-based, network implementation of an integrated navigation system,” IEEE Trans. Ind. Electron. 57 (2), 769783 (Feb. 2010).
61. Masoud, A. A., “A Hybrid, PDE-ODE Control Strategy For Intercepting An Intelligent, Well-Informed Target In A Stationary, Cluttered Environment,” In: Applied Mathematical Sciences (Colantoni, A., ed.), vol. 1, 48 (HIKARI Ltd., 2007) pp. 23452371.
62. Howen, V. P., Finite Difference Method for Solving Partial Differential Equations (Mathematical Centre, Amsterdam, 1968).
63. Zienkiewicz, O. and Morgan, K., Finite Element and Approximation (Wiley, New York, NY, 1983).
64. Brebbia, C., Telles, J. and Worbel, L., Boundary Element Techniques, Theory and Applications in Engineering (Springer-Verlag, Berlin, 1984).
65. Plumer, E., Cascading a systolic and a feedforward neural network for navigation and obstacle avoidance using potential fields, prepared for Ames Research Center, Contract NGT–50 642, NASA Contractor Rep. 177 575, (Feb. 1991).
66. Lei, G., “A neuron model with fluid properties for solving labyrinthian puzzle,” Biolog. Cybern. 64, 6167 (1990).
67. Girau, B. and Boumaza, A., “Embedded harmonic control for dynamic trajectory planning on FPGA,” Proceedings of the International Conference on Artificial Intelligence and Applications (AIA '07) (2007) pp. 244–249.
68. Stan, M., Burleson, W., Connolly, C. and Grupen, R., “Analog VLSI for path planning,” J VLSI Signal Process. 8, 6173 (1994).
69. Althofer, K., Fraser, D. and Bugmann, G., “Rapid path planning for robotic manipulators using an emulated resistive grid,” Electron. Lett. 31 (22), 19601961 (1995).
70. Koziol, S. and Hasler, P., “Reconfigurable analog VLSI circuits for robot path planning,” Proceedings of the NASA/ESA Conference on Adaptive Hardware and systems (AHS '11), San Diego, CA, USA (Jun. 6–9, 2011) San Diego Convention Center, pp. 36–43.
71. Koziol, Scott, Hasler, Paul and Stilman, Mike, “Robot Path Planning Using Field Programmable Analog Arrays,” Proceedings of the IEEE International Conference on Robotics and Automation, River Centre, Saint Paul, MN, USA (May 14–18, 2012) pp. 1747–1752.
72. Pershin, Y. V. and Ventra, M. D., “Solving mazes with memristors: A massively parallel approach,” Phys. Rev. E 84, 046703 – Published 046703-1–046703–6 (Oct. 14, 2011).
73. Vourkas, I. and Ch. Sirakoulis, G., Memristor-Based Nanoelectronic Computing Circuits and Architectures (Springer International Publishing, Switzerland, 2016).
74. Murarka, A., Building Safety Maps Using Vision for Safe Local Mobile Robot Navigation Ph.D.Thesis (Austin: The University of Texas at Austin, Aug. 2009).
75. Connolly, C. I., “Harmonic functions and collision probabilities,” Int. J. Robot. Res. 16 (4), 497507 (Aug. 1997). doi: 10.1177/027836499701600404
76. Ok, Kyel, Ansari, Sameer, Gallagher, Billy, Sica, William, Dellaert, Frank and Stilman, Mike, “Path Planning with Uncertainty: Voronoi Uncertainty Fields,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘13), Karlsruhe, Germany (May 6–10, 2013) pp. 4596–4601
77. Bergman, S. and Schiffer, M., Kernel Functions and Elliptic Differential Equations in Mathematical Physics (Academic Press Inc., New York, NY, 1953).
78. Kim, C. H. and Kim, B. K., “Minimum-energy translational trajectory generation for differential-driven wheeled mobile robots,” J. Intell. Robot. Syst. 49 (4), 367383 (Aug. 2007).
79. Mei, Y.. Energy-Efficient Mobile Robots. Ph.D. Thesis (Purdue University, May 2007).
80. Masoud, A., “A harmonic potential field approach for joint planning & control of a rigid, seprable, nonholonomic, mobile robot,” Robot. Autonomous Syst. 61 (6), 593615 (Jun. 2013).
82. Iñiguez, P. and Rosell, J., “Efficient Path Planning Using Harmonic Functions Computed on a Non-regular Grid,” In: (Toledo, M. Teresa Escrig Francisco, Golobardes, E., eds.), Proceedings of the 5th Catalonian Conference on Topics in Artificial on Intelligence (AICCIA '02), Spain (Springer, Oct. 24–25, 2002) pp. 345–354.
83. Banta, L., “Advanced Dead-Reckoning Navigation for Mobile Robots,” Ph.D. Thesis (Mechanical Engineering, Georgia Institute of Technology, 1987).
84. Sekimori, D. and Miyazaki, F., “Precise Dead-Reckoning for Mobile Robots Using Multiple Optical Sensors,” Inform. in Control, Autom. and Robot. II, 145151 (2007), Springer.
85. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B. and Konolige, K., “The Office Marathon: Robust Navigation in an Indoor Office Environment,” Proceedings of the IEEE International Conference on Robotics and Automation Anchorage Convention District, Anchorage, AK, USA (May 3–8, 2010) pp. 300–307.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
VIDEO
Supplementary materials

Masoud and Al-Shaikhi supplementary material 2
Supplementary Video

 Video (55.1 MB)
55.1 MB
UNKNOWN
Supplementary materials

Masoud and Al-Shaikhi supplementary material 1
Masoud and Al-Shaikhi supplementary material

 Unknown (10.9 MB)
10.9 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 158 *
Loading metrics...

* Views captured on Cambridge Core between 1st June 2018 - 19th September 2018. This data will be updated every 24 hours.