Skip to main content
×
×
Home

Sliding mode control of a shape memory alloy actuated active flexible needle

  • Felix Orlando Maria Joseph (a1) (a2) and Tarun Podder (a1)
Summary

In medical interventional procedures such as brachytherapy, biopsy and radio-frequency ablation, precise tracking through the preplanned desired trajectory is very essential. This important requirement is critical due to two major reasons: anatomical obstacle avoidance and accurate targeting for avoiding undesired radioactive dose exposure or damage to neighboring tissue and critical organs. Therefore, a precise control of the needling device in the unstructured environment in the presence of external disturbance is required to achieve accurate target reaching in clinical applications. In this paper, a shape memory alloy actuated active flexible needle controlled by an adaptive sliding mode controller is presented. The trajectory tracking performance of the needle is tested while having its actual movement in an artificial tissue phantom by giving various input reference trajectories such as multi-step and sinusoidal. Performance of the adaptive sliding mode controller is compared with that of the proportional, integral and derivative controller and is proved to be the effective method in the presence of the external disturbances.

Copyright
Corresponding author
*Corresponding author. E-mail: felixfee@iitr.ac.in
E-mail: txp172@case.edu
References
Hide All
1. Abolhassani, N., Patel, R. and Moallem, M., “Needle insertion into soft tissue: A survey,” Med. Eng. Phys. 29 (4), 413431 (2007).
2. Webster, R. J. III, Okamura, A. M. and Cowan, N. J. “Towards Active Cannulas: Miniature Snake-Like Surgical Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), Beijing, China, (Oct. 9–15, 2006) pp. 2857–2863.
3. Swaney, P. J., Burgner, J., Webster, R. J. III and Alterovitz, R., “A flexure-based steerable needle: High curvature with reduced tissue damage,” IEEE Trans. Biomed. Eng. 60 (4), 906909 (2013).
4. Okamura, A. M., Simone, C. and O'Leavy, M. D., “Force modeling for needle insertion into soft tissue,” IEEE Trans. Biomed. Eng. 51 (10), 17071716 (2004).
5. DiMaio, S. P. and Salcudean, S. E., “Interactive simulation of needle insertion models,” IEEE Trans. Robot. 52 (7), 11671179 (2005).
6. Goksel, O., Salcudean, S. E. and DiMaio, S. P., “3D simulation of needle-tissue interaction with application of prostate brachytherapy, Comp. Aid. Sur. 11 (6), 279288 (2006).
7. Gao, D., Lei, Y., Lian, B. and Yao, B., “Modeling and simulation of flexible needle insertion into soft tissue using modified local constraints,” J. Manuf. Sci. Eng. 138 (12), 1210112112 (2016).
8. Glozman, D. and Shoham, M., “Image-guided robotic flexible needle steering,” IEEE Trans. Biomed. Eng. 23, 459467 (2007).
9. Barnett, A. C., Lee, Y. S. and Moore, J. Z., “Fracture mechanics model of needle cutting tissue,” J. Manuf. Sci. Eng. 138, 011005011011 (2016).
10. Reed, K. B., Kallem, V., Alterovitz, R., Goldberg, K., Okamura, A. and Cowan, N. J., “Integrated Planning and Image-guided Control for Planar Needle Steering,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2008) pp. 819–824.
11. Reed, K. B., Majewik, A., Kallem, V., Alterovitz, R., Goldberg, K., Cowan, N. J. and Okamura, A. M., “Robot-assisted needle steering,” IEEE Robot. Autom. Mag. 18 (4), 3546 (2011).
12. Alterovitz, R. and Goldberg, K., “The Stochastic Motion Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty,” Proceedings of the Robotics: Science and Systems Conference, Atlanta, GA, USA (2007) pp. 1–8.
13. Kallem, V. and Cowan, N. J., “Image guidance of flexible tip-steerable needles,” IEEE Trans. Robot. 25 (1), 191196 (2009).
14. Swensen, J. P. and Cowan, N. J., “Torsional Dynamics of Compensation Enhances Robotic Control of Tip-steerable Needles,” Proceedings of the IEEE International Conference on Robotics and Automation, Minnesota, USA (2012) pp. 1601–1606.
15. Wood, N. A., Shahrour, K., Ost, M. C. and Riviere, C. N., “Needle Steering System using Duty-cycled Rotation for Percutaneous Kidney Access,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2010) pp. 5432–5435.
16. Wood, N. A., Shehrour, K., Ost, M. C. and Riviere, C. N. “Closed-loop Control of Needle Steering for Percutaneous Kidney Access,” Proceedings of the In ICRA Workshop on Snakes, Worms and Catheters: Continuum and Serpentine Robots for Minimally Invasive Surgery, 4 (2010) pp. 48–50.
17. Ko, S. Y. and Rodriguez y Baena, F., “Trajectory following for a flexible probe with state/input constraints: An approach based on model predictive control,” Robot Autonomous Syst. 60 (4), 509521 (2012).
18. Bui, V. K., Park, S., Park, J. and Ko, S. Y., “A novel curvature-controllable steerable needle for percutaneous intervention,” J. Eng. Med. 230 (8), 727738 (2016).
19. Hauser, K., Alterovitz, R., Chentanez, N., Okamura, A. M. and Goldberg, K., “Feedback Control for Steering Needles Through 3D Deformable Tissue using Helical Paths,” Proceedings of the in Proceedings on the Robotics: Science and Systems Conference, Seattle, USA (2009) pp. 1–8.
20. Abayazid, M., Roesthais, R. J., Reilink, R. and Misra, S., “Integrating deflection models and image feedback for real-time flexible needle steering,” IEEE Trans. Robot. 29 (2), 542553 (2013).
21. Patil, S., Burgner, J., Webster, R. J. III, and Alterovitz, R., “Needle steering in 3D via rapid replanning,” IEEE Trans. Robot. 30 (4), 853864 (2014).
22. Podder, T. K., Hutapea, P., Darvish, K., Dicker, A. and Yu, Y., “Smart Needling System for Fully Conformal Radiation Dose Delivery in Treating Prostate Cancer,” Proceedings of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems(SMASIS), Philadelphia, PA (Sep. 28–Oct. 1) pp. 1–4.
23. Podder, T. K., Dicker, A. P., Hutapea, P., Darvish, K. and Yu, Y., “A novel curvilinear approach for prostate seed implant,” J. Med. Phys. 39 (4), 18871892 (2012).
24. Stock, R. G., Stone, N. N., Lo, Y. C., Malhoda, N., Kao, J. and DeWyngaert, J. K., “Postimplant dosimetry for 125I prostate implants: Definitions and factors affecting outcome,” Int. J. Radiat. Oncol. Biol. Phys. 48 (3), 899906 (2000).
25. Webster, R. J., Romano, J. M. and Cowan, N. J., “Mechanics of precurved-tube continuum robots,” IEEE Trans. Robot. 25 (1), 6778 (2009).
26. Sears, P. and Dupont, P., “A Steerable Needle Technology using Curved Concentric Tubes,” Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China (2006) pp. 2850–1856.
27. Reed, K. B., Okamura, A. M. and Cowan, N. J., “Modeling and control of needles with torsional friction,” IEEE Trans. Biomed. Eng. 56 (12), 29052916 (2009).
28. Reed, K. B., Okamura, A. M. and Cowan, N. J., “Controlling a Robotically Steered Needle in the Presence of Torsional Friction,” Proceedings of the IEEE International Conference on Robotics and Automation (2009) pp. 3476–3481.
29. Swensen, J. P., Lin, M., Okamura, A. M. and Cowan, N. J., “Torsional dynamics of steerable needles: Modeling and fluoroscopic guidance,” IEEE Trans. Biomed. Eng. 61 (11), 27072717 (2014).
30. Burdette, E. C., Rucker, D. C., Prakash, P., Diederich, C. J., Croom, J. M., Clarke, C., Stolka, P., Juang, T., Boctor, E. M. and Webster, R. J., “The ACUSITT Ultrasonic Ablator: The First Steerable Needle with an Integrated Interventional Tool,” Proceedings of SPIE, Med, Imag. Ultrason. Imag., Tomogr., Ther., 7629 (2010) pp. 76290V-1–79641I-10.
31. Burgner, J., Swaney, P. J., Bruns, T. L., Clark, M. S., Rucker, D. C., Burdette, E. C. and Webster, R. J., “An autoclavable steerable cannula manual deployment device: Design and accuracy analysis,” J. Med. Devices 6 (4), 041007 (2012).
32. Levy, W. J. and Oro, J. J., “Curved biopsy needle for stereotactic surgery: A technical note,” Neurosurgery 15 (1), 8285 (1984).
33. Furusho, J., Ono, T., Chiba, Y. and Horio, H., “Development of a Curved Multi-Tube (CMT) Catheter for Percutaneous Umbilical Blood Sampling and Control Methods of CMT Catheters for Solid Organs,” Proceedings of the IEEE Int. Conf. Mech. Autom., (1–4, 2005) pp. 410–415.
34. Jelinek, F., Pessers, R. and Breedveld, P., “DragonFlex smart steerable laparoscopic instrument,” J. Med. Devices 8 (1), 015001015009 (2014).
35. Clogenson, H. C. M., Dankelman, J. and Van den dobbelsteen, J. J., “Steerable guidewire for magnetic resonance guided endovascular interventions,” J. Med. Devices 8 (1), 021002021007 (2014).
36. Henken, K., Van gerwen, D., Dankelman, J. and van den dobbelsteen, J. J., “Steerable guidewire for magnetic resonance guided endovascular interventions,” Minimally Invasive Ther. 21 (6) 408414 (2014).
37. Adebar, T. K., Greer, J. D., Laeseke, P. F., Hwang, G. L. and Okamura, A. M., “Methods for improving the curvature of steerable needles in biological tissues,” IEEE Trans. Biomed. Eng. 63 (6), 11671177 (2016).
38. Scali, M., Pusch, T. P., Breedveld, P. and Dodou, D., “Needle-like instrument for steering through solid organs: A review on the scientific and patent literature,” Proc. Inst. Mech. Eng. H 231 (3), 250265 (2017).
40. Yamada, A., Naka, S., Nitta, N., Morikawa, S. and Tani, T., “A loop-shaped flexible mechanism for robotic needle steering,” IEEE Robot. Autom. Lett. 3 (2), 648655 (2018).
41. Ryu, S. C., Quek, Z. F., Renaud, P., Black, R. J., Moslehi, B., Daniel, B. L., Cho, K. J. and Cutkosky, M. R., “Design of an optically controlled MR-compatible active needle,” IEEE Trans. Robot. 31 (1), 111 (2015).
42. Kohn, B., Honarvar, M. and Hutapea, P., “Design optimization study of a shape memory alloy active needle for biomedical applications,” Med. Eng. Phys. 37 (5), 469477 (2015).
43. Konh, B., Honarvar, M. and Hutapea, P., “Application of SMA wire for an active surgical needle,” ASME Paper No. SMASIS2013-3142 (2013).
44. Konh, B., Datla, N. V. and Hutapea, P., “Feasibility of shape memory alloy wire actuation for an active steerable cannula,” J. Med. Device. 9 (3), 021002-021002-11 (2015).
45. Datla, N. V., Kohn, B., Honarvar, M., Podder, T. K., Dicker, A. P., Yu, Y. and Hutapea, P., “A model to predict deflection of bevel-tipped active needle advancing in soft tissue,” Med. Eng. Phys. 36, 285293 (2014).
46. Datla, N. V., Koo, J., Choi, D., Kohn, B., Nguyen, T. M., Podder, T. K., Darvish, K., Dicker, A. P., Yu, Y. and Hutapea, P., “Polyacrylamide phantom for needle-tissue interaction studies with active needles,” Med. Eng. Phys., 36, 140145 (2014).
47. Ayvali, E., Liang, C. P., Ho, M., Chen, Y. and Desai, J. P., “Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures,” Int. J. Robot. Res. 31 (5), 588603 (2012).
48. Ruiz, B., Hutapea, P., Darvish, K., Dicker, A., Yu, Y. and Podder, T. K., “SMA Actuated Flexible Needle Control using EM Sensor Feedback for Prostate Brachytherapy,” IEEE-International Conference on Robotics and Automation, Needle Steering Workshop. http://www.cs.cmu.edu/~surgmech/NeedleWorkshop/posters/ruiz.html.
49. Ko, S. Y., Frasson, L. and Baena, F. R., “Closed-loop planar motion control of a steerable probe with a “programmable bevel” inspired by nature,” IEEE Trans. Robot. 27 (5), 970983 (2011).
50. Xu, K., Zhao, J. and Zheng, X., “Configuration comparison among kinematically optimized continuum manipulators for robotic surgeries through a single access point,” Robotica 33, 20252044 (2015).
51. Maria Joseph, F., Kumar, M., Franz, K., Hutapea, P., Dicker, A. D., Zhao, Y. Z., Yu, Y. and Podder, T., “Control of shape memory alloy actuated flexible needle using multimodal sensory feedbacks,” J Autom. Control Eng. 3 (5), 428434 (2014).
52. Maria Joseph, F., Franz, K., Luan, Y., Zhao, Y. L., Datla, N. V., Hutapea, P., Dicker, A., Yu, Y. and Podder, T., “Development of a Coordinated Controller for Robot-assisted Shape Memory Alloy Actuated Needle for Prostate Brachytherapy,” Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, US, (Aug. 26–30, 2014) pp. 357–360.
53. Maria Joseph, F., Kumar, M., Hutapea, P., Dicker, A., Yu, Y. and Podder, T., “Development of self-actuating flexible needle system for surgical procedures,” J. Med. Devices 9, 020945:1–2 (2015).
54. Maria Joseph, F., Kumar, M., Hutapea, P., Dicker, A., Yu, Y. and Podder, T., “Closed Loop Control of a Robot Assisted Smart Flexible Needle for Percutaneous Intervention,” Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy (2015) pp. 3663–3666.
55. Maria Joseph, F., Hans, S., Singhal, A., Yadav, A., Gupta, A., Malhotra, A. and Singh, P. S., “Inverse Kinematic Control of a Smart Active Needle for Percutaneous Intervention,” Proceedings of the IEEE Region 10 Conference (TENCON), 2017, pp. 1159–1164.
56. Van de Berg, N. J., Dankelman, J. and Van den Dobbelsteen, J. J., “Design of an actively controlled steerable needle with tendon actuation and FBG-based shape sensing,” Med. Eng. Phys. 37, 617622 (2015).
57. Rucker, D. C., Das, J., Gilbert, H. B., Swaney, P. J., Miga, M. I., Sarkar, N. and Webster, R. J. III, “Sliding mode control of steerable needles,” IEEE Trans. Robot. 29 (5), 12891299 (2013).
58. Kuo, T., Huang, Y. J., Chen, C. Y. and Chang, C. H., “Adaptive sliding mode control with PID tuning for uncertain systems,” Eng. Lett. 16 (3), EL_16_3_06 (2006).
59. Tai, N. T. and Ahn, K. K., “Adaptive proportional-integral-derivative tuning sliding mode control for a shape memory alloy actuator,” Smart Mater. Structures 20, 113 (2011).
61. ATI Industrial Automation, Nano17, 6-axis Force/Torque Sensor, ATI Industrial Automation Inc., Apex, NC, 2008. [Online]. Available: http://www.ati-ia.com/products/ft/ft_models.aspx?id=Nano17.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 169 *
Loading metrics...

* Views captured on Cambridge Core between 7th May 2018 - 24th June 2018. This data will be updated every 24 hours.