Published online by Cambridge University Press: 31 August 2018
The purpose of this study is to determine the dynamic load carrying capacity (DLCC) of a manipulator that moves on the specified path using a new closed loop optimal control method. Solution methods for designing nonlinear optimal controllers in a closed-loop form are usually based on indirect methods, but the proposed method is a combination of direct and indirect methods. Optimal control law is given by solving the nonlinear Hamilton–Jacobi–Bellman (HJB) partial differential equation. This equation is complex to solve exactly for complex dynamics, so it is solved numerically using the Galerkin procedure combined with a nonlinear optimization algorithm. To check the performance of the proposed algorithm, the simulation is performed for a fixed manipulator. The results represent the efficiency of the method for tracking the pre-determined path and determining the DLCC. Finally, an experimental test has been done for a two-link manipulator and compare with simulation results.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.