Skip to main content
×
×
Home

Stable pinching by controlling finger relative orientation of robotic fingers with rolling soft tips

  • Efi Psomopoulou (a1), Daiki Karashima (a2), Zoe Doulgeri (a1) and Kenji Tahara (a2)
Summary
SUMMARY

There is a large gap between reality and grasp models that are currently available because of the static analysis that characterizes these approaches. This work attempts to fill this need by proposing a control law that, starting from an initial contact state which does not necessarily correspond to an equilibrium, achieves dynamically a stable grasp and a relative finger orientation in the case of pinching an object with arbitrary shape via rolling soft fingertips. Controlling relative finger orientation may improve grasping force manipulability and allow the appropriate shaping of the composite object consisted of the distal links and the object, for facilitating subsequent tasks. The proposed controller utilizes only finger proprioceptive measurements and is not based on the system model. Simulation and experimental results demonstrate the performance of the proposed controller with objects of different shapes.

Copyright
Corresponding author
*Corresponding author. E-mail: doulgeri@eng.auth.gr
References
Hide All
1. Mason M. T. and Salisbury J. K., Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge, MA, 1985).
2. Kawasaki H., Komatsu T. and Uchiyama K., “Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II,” IEEE/ASME Trans. Mechatronics 7 (3), 296303 (2002).
3. Hoshino K. and Kawabuchi I., “Pinching at fingertips for humanoid robot hand,” J. Robot. Mechatronics 17 (6), 655663 (2005).
4. Liu H., Wu K., Meusel P., Seitz N., Hirzinger G., Jin M., Liu Y., Fan S., Lan T. and Chen Z., “Multisensory Five-Finger Dexterous Hand: The DLR/HIT Hand II,” IEEE/RSJ International Conference on Intelligent Robots and Systems (Nice, France, Sep. 2008) pp. 3692–3697.
5. SHADOW, “Shadow dexterous hand,” built by the Shadow Robot Company based in London, UK. http://www.shadowrobot.com/products/dexterous-hand/
6. Zribi M., Chen J. and Mahmoud M., “Coordination and control of multi-fingered robot hands with rolling and sliding contacts,” J. Intell. Robot. Syst. 24 (2), 125149 (1999).
7. Arimoto S., Control Theory of Multi-fingered Hands: A Modelling and Analytical-mechanics Approach for Dexterity and Intelligence (Springer-Verlag, London Limited, London, 2008).
8. Bicchi A., “Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity,” IEEE Trans. Robot. Autom. 16 (6), 652662 (2000).
9. Wimbock T., Ott C., Albu-Schaffer A. and Hirzinger G., “Comparison of object-level grasp controllers for dynamic dexterous manipulation,” Int. J. Robot. Res. 31 (1), 323 (2011).
10. Bohg J., Morales A., Asfour T. and Kragic D., “Data-driven grasp Synthesis–a survey,” IEEE Trans. Robot. 30 (2), 289309 (2013).
11. Farshchi S., “Let's Bring Rosie Home: 5 Challenges We Need to Solve for Home Robots,” In: IEEE Spectrum's Automaton (Guizzo E., ed.) (2016). http://spectrum.ieee.org/automaton/robotics/home-robots/lets-bring-rosie-home-5-challenges-we-need-to-solve-for-home-robots
12. Murray R. and Sastry S., A Mathematical Introduction to Robotic Manipulation (CRC Press INC, Boca Raton, Florida, USA, 1994).
13. Bicchi A. and Kumar V., “Robotic Grasping and Contact: A Review,” IEEE International Conference on Robotics and Automation (San Fransisco, CA, USA, 2000) pp. 348–353.
14. Prattichizzo D. and Trinkle J. C., “Grasping,” In: Springer Handbook of Robotics (Prof. Siciliano B. and Prof. Khatib O. eds.) (Springer, Berlin, Heidelberg, 2008) pp. 671700.
15. Prattichizzo D., Malvezzi M., Gabiccini M. and Bicchi A., “On the manipulability ellipsoids of underactuated robotic hands with compliance,” In: Robot. Auton. Syst. (Prof. Siciliano B. and Prof. Khatib O., eds.) 60 (3), 337346 (2012).
16. Roa M. A. and Suarez R., “Computation of independent contact regions for grasping 3-D objects,” IEEE Trans. Robot. 25 (4), 839850 (2009).
17. Krug R., Dimitrov D., Charusta K. and Iliev B., “On the Efficient Computation of Independent Contact Regions for Force Closure Grasps,” IEEE/RSJ International Conference on Intelligent Robots and Systems (Taipei, Taiwan, Oct. 2010) pp. 586–591.
18. Rosales C., Suarez R., Gabiccini M. and Bicchi A., “On the Synthesis of Feasible and Prehensile Robotic Grasps,” Proceedings of the 2012 IEEE International Conference on Robotics and Automation (Saint Paul, MN, USA, May 2012) pp. 550–556.
19. Rodriguez A., Mason M. T. and Ferry S., “From Caging to Grasping,” In: Robotics: Science and Systems Conference (RSS) (Los Angeles, Pittsburgh, PA, USA, 2011) pp. 18.
20. Seo J., Kim S. and Kumar V., “Planar, Bimanual, Whole-Arm Grasping,” IEEE International Conference on Robotics and Automation (Saint Paul, MN, USA, May 2012) pp. 3271–3277.
21. Zhang L. and Trinkle J. C., “The Application of Particle Filtering to Grasping Acquisition with Visual Occlusion and Tactile Sensing,” IEEE International Conference on Robotics and Automation (Saint Paul, MN, USA, May 2012) pp. 3805–3812.
22. Miller A. T. and Allen P. K., “GraspIt!IEEE Robot. Autom. Mag. 11 (4), 110122 (2004).
23. Miller A. T., Knoop S., Christensen H. I. and Allen P. K., “Automatic Grasp Planning using Shape Primitives,” IEEE International Conference on Robotics and Automation (Taipei, Taiwan, Sep. 2003) pp. 1824–1829.
24. Pelossof R., Miller A., Allen P. and Jebara T., “An SVM Learning Approach to Robotic Grasping,” IEEE International Conference on Robotics and Automation (New Orleans, LA, USA, Apr. 2004) pp. 3512–3518.
25. Goldfeder C., Allen P. K., Lackner C. and Pelossof R., “Grasp Planning Via Decomposition Trees,” IEEE International Conference on Robotics and Automation (Rome, Italy, Apr. 2007) pp. 4679–4684.
26. Borst C., Fischer M. and Hirzinger G., “Grasping the Dice by Dicing the Grasp,” IEEE/RSJ International Conference on Intelligent Robots and Systems (Las Vegas, NV, USA, Oct. 2003) pp. 3692–3697.
27. Ciocarlie M. T. and Allen P. K., “Hand posture subspaces for dexterous robotic grasping,” Int. J. Robot. Res. 28 (7), 851867 (2009).
28. Balasubramanian R., Xu L., Brook P. D., Smith J. R. and Matsuoka Y., “Physical human interactive guidance: Identifying grasping principles from human-planned grasps,” IEEE Trans. Robot. 28 (4), 899910 (2012).
29. Weisz J. and Allen P. K., “Pose Error Robust Grasping from Contact Wrench Space Metrics,” IEEE International Conference on Robotics and Automation (Saint Paul, MN, USA, May 2012) pp. 557–562.
30. Kappler D., Bohg J. and Schaal S., “Leveraging Big Data for Grasp Planning,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE (Seattle, WA, USA, May 2015) pp. 4304–4311.
31. Johns E., Leutenegger S. and Davison A. J., “Deep Learning a Grasp Function for Grasping Under Gripper Pose Uncertainty,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Daejeon, South Korea (Oct. 2016) pp. 4461–4468.
32. Arimoto S., Nguyen P. T. A., Han H.-Y. and Doulgeri Z., “Dynamics and control of a set of dual fingers with soft tips,” Robotica 18 (1), 7180 (2000).
33. Doulgeri Z., Fasoulas J. and Arimoto S., “Feedback control for object manipulation by a pair of soft tip fingers,” Robotica 20 (1), 111 (2002).
34. Song S. K., Park J. B. and Choi Y. H., “Dual-fingered stable grasping control for an optimal force angle,” IEEE Trans. Robot. 28 (1), 256262 (2012).
35. Ozawa R., Arimoto S. and Nakamura S., “Control of an object with parallel surfaces by a pair of finger robots without object sensing,” IEEE Trans. Robot. 21 (5), 965976 (2005).
36. Arimoto S., “A differential-geometric approach for 2D and 3D object grasping and manipulation,” Annu. Rev. Control 31 (2), 189209 (2007).
37. Arimoto S., Tahara K., Yamaguchi M., Nguyen P. and Han M.-Y., “Principles of superposition for controlling pinch motions by means of robot fingers with soft tips,” Robotica 19 (01), 2128 (2001).
38. Arimoto S., Tahara K., Bae J.-H. and Yoshida M., “A stability theory of a manifold: Concurrent realization of grasp and orientation control of an object by a pair of robot fingers,” Robotica 21 (02), 163178 (2003).
39. Yoshida M., Arimoto S. and Tahara K., “Pinching 2D Object with Arbitrary Shape by Two Robot Fingers Under Rolling Constraints,” IEEE/RSJ International Conference on Intelligent Robots and Systems (St Louis, MO, USA, 2009) pp. 1805–1810.
40. Kawamura A., Tahara K., Kurazume R. and Hasegawa T., “Dynamic grasping of an arbitrary polyhedral object,” Robotica 31 (04), 511523 (2013).
41. Grammatikopoulou M., Psomopoulou E., Droukas L. and Doulgeri Z., “A Controller for Stable Grasping and Desired Finger Shaping without Contact Sensing,” IEEE International Conference on Robotics and Automation (Hong Kong, China, May 2014) pp. 3662–3668.
42. Shimoga K. and Goldenberg A., “Soft robotic fingertips part II: Modeling and impedance regulation,” Int. J. Robot. Res. 15 (4), 335350 (1996).
43. Chiacchio P., Chiaverini S., Sciavicco L. and Siciliano B., “Global task space manipulability ellipsoids for multiple-arm systems,” IEEE Trans. Robot. Autom. 7 (5), 678685 (1991).
44. Caccavale F. and Uchiyama M., “Cooperative Manipulators,” In: Springer Handbook of Robotics (Prof. Siciliano B. and Prof. Khatib O., eds.) (Springer, Berlin, Heidelberg, 2008) pp. 701718.
45. Yoshikawa T., Foundations of Robotics (MIT Press, Cambridge, MA, USA, 1990).
46. Tahara K., Maruta K., Kawamura A. and Yamamoto M., “Externally Sensorless Dynamic Regrasping and Manipulation by a Triple-Fingered Robotic Hand with Torsional Fingertip Joints,” IEEE International Conference on Robotics and Automation (Saint Paul, MN, USA, 2012) pp. 3252–3257.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
VIDEO
Supplementary materials

Psomopoulou supplementary material
Psomopoulou supplementary material 1

 Video (14.8 MB)
14.8 MB

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 76 *
Loading metrics...

Abstract views

Total abstract views: 283 *
Loading metrics...

* Views captured on Cambridge Core between 14th August 2017 - 20th January 2018. This data will be updated every 24 hours.