Skip to main content
×
×
Home

A stance period approach for simplified observation of galloping as applied to canines

  • Surya P. N. Singh (a1) and Kenneth J. Waldron (a2)
Summary

The gallop is the preferred gait by mammals for agile traversal through terrain. This motion is intrinsically complex as the feet are used individually and asymmetrically. Simple models provide a conceptual framework for understanding this gait. In this light, this paper considers the footfall projections as suggested by an impulse model for galloping as a measurement simplifying strategy. Instead of concentrating on forces and inverse dynamics, this view focuses observations on leg motion (footfalls and stance periods) for subsequent gallop analysis and parameter estimation. In practice, this eases experiments (particularly for IR-based motion capture) by extending the experimental workspace, removing the need for single-leg contact force-plate measurements, and reducing the marker set. This provides shorter setup times, and it reduces postprocessing as data are less likely to suffer from occlusion, errant correspondence, and tissue flexion. This approach is tested using with three canine subjects (ranging from 8 to 24 kg) performing primarily rotary gallops down a 15 m runway. Normalized results are in keeping with insights from previous animal and legged robot studies and are consistent with motions suggested by said impulse model.

Copyright
Corresponding author
*Corresponding author. E-mail: spns@uq.edu.au
References
Hide All
1.Nichol, J. G., Singh, S. P. N., Waldron, K. J., Palmer, L. R. and Orin, D. E., “System design of a quadrupedal galloping machine,” Int. J. Robot. Res. 23 (10–11), 10131027 (2004).
2.Hoyt, D. and Taylor, C., “Gait and the energetics of locomotion in horses,” Nature 292 (5820), 239240 (1981).
3.Schmiedeler, J. P. and Waldron, K. J., “The mechanics of quadrupedal galloping and the future of legged vehicles,” Int. J. Robot. Res. 18 (12), 12241234 (1999).
4.Wickler, S. J., Hoyt, D. F., Cogger, E. A. and Myers, G., “The energetics of the trot-gallop transition,” J. Exp. Biol. 206 (9), 15571564 (2003).
5.Deuel, N. R. and Lawrence, L. M., “Kinematics of the equine transverse gallop,” J. Equine Veterinary Sci. 7 (6), 375382 (1987).
6.Perkins, A., Abdallah, M., Mitiguy, P. and Waldron, K., “A Unified Method for Multi-Body Systems Subject to Stick-Slip Friction and Intermittent Contact,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (Sep. 2008) pp. 2311–2316.
7.Pandy, M. G., Kumar, V., Waldron, K. J. and Berme, N., “The dynamics of quadrupedal locomotion,” J. Biomech. Eng. 110 (3), 230237 (1988).
8.Dutto, D. J., Hoyt, D. F., Cogger, E. A. and Wickler, S. J., “Ground reaction forces in horses trotting up an incline and on the level over a range of speeds,” J. Exp. Biol. 207 (20), 35073514 (2004).
9.Singh, S. P. N., Csonka, P. J. and Waldron, K. J., “Robotic Harness for the Field Assessment of Galloping Gaits,’ Proceedings of the International Conference on Intelligent Robots and Systems (IROS), (Oct. 2007) pp. 4247–4252.
10.Walter, R. M. and Carrier, D. R., “Ground forces applied by galloping dogs,” J. Exp. Biol. 210 (2), pp. 208216 (2007).
11.Waldron, K. J., Estremera, J., Csonka, P. and Singh, S. P. N., “Analyzing bounding and galloping using simple models,” J Mech. Robot. 1 (011002), 111 (Feb. 2009).
12.Raibert, M. H., Legged Robots That Balance, MIT Press series in artificial intelligence (MIT Press, Cambridge, 1986).
13.Herr, H. M. and McMahon, T. A., “A galloping horse model,” Int. J. Robot. Res. 20 (1), 2637 (2001).
14.Poulakakis, I., Smith, J. A. and Buehler, M., “Experimentally Validated Bounding Models for Scout II Quadrupedal Robot,” Proceedings of the International Conference on Robotics and Automation (Apr. 2004) vol. 3, pp. 2595–2600.
15.Hurst, J. W. and Rizzi, A. A., “Series compliance for an efficient running gait,” IEEE Robot. Autom. Mag. 15 (3), pp. 4251 (Sep. 2008).
16.Bryant, J. D., Bennett, M. B. and Alexander, R. M., “Forces exerted on the ground by galloping dogs (Canis familiaris),” J Zoology 213 (2), 193203 (1987).
17.Williams, S. B., Usherwood, J. R., Jespers, K., Channon, A. J. and Wilson, A. M., “Exploring the mechanical basis for acceleration: Pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris),” J. Exp. Biol. 212 (4), 550565 (2009).
18.Van Ingen Schenau, G. J., “Some fundamental aspects of the biomechanics of overground versus treadmill locomotion,” Med. Sci. Sports and Exercise 12 (4), 257261 (1980).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed