1. Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R. and Schieber, B., “The Angular-Metric Traveling Salesman Problem,” Proceedings of the 8^{th} Annual ACM-SIAM Symposium on Discrete Algorithms SODA1997, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics (1997) pp. 221–229.
2. Alatartsev, S., Mersheeva, V., Augustine, M. and Ortmeier, F., “On Optimizing A Sequence of Robotic Tasks,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems IROS (2013).
3. Alves Neto, A., Macharet, D. G. and Campos, M. F. M., “Feasible RRT-Based Path Planning Using Seventh Order Bézier Curves,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS2010 (Oct. 2010) pp. 1445–1450.
4. Applegate, D. L., Bixby, R. E., Chvatal, V. and Cook, W. J., The Traveling Salesman Problem: A Computational Study, Princeton Series in Applied Mathematics (Princeton University Press, Princeton, NJ, USA, 2007).
5. Arkin, E. M. and Hassin, R., “Approximation algorithms for the geometric covering salesman problem,” Discrete Appl. Math. 55, 197–218 (Dec. 1994).
6. Arsie, A., Savla, K. and Frazzoli, E., “Efficient routing algorithms for multiple vehicles with no explicit communications,” IEEE Trans. Autom. Control 54 (10), 2302–2317 (Oct. 2009).
7. Arslan, G., Marden, J. R. and Shamma, J. S., “Autonomous vehicle-target assignment: A game-theoretical formulation,” J. Dyn. Syst. Meas. Control 129 (5), 584–596 (2007).
8. Ausiello, G., Bonifaci, V. and Laura, L., “The on-line asymmetric traveling salesman problem,” J. Discrete Algorithms 6 (2mo), 290–298 (2008). Selected papers from CompBioNets 2004 - Algorithms and Computational Methods for Biochemical and Evolutionary Networks.
9. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L. and Talamo, M., “Algorithms for the on-line travelling salesman,” Algorithmica 29, 560–581 (2001).
10. Bednowitz, N., Batta, R. and Nagi, R., “Dispatching and loitering policies for unmanned aerial vehicles,” J. Simul. 8 (1), 9–24 (Feb. 2012).
11. Bektas, T., “The multiple traveling salesman problem: An overview of formulations and solution procedures,” Omega 34 (3), 209–219 (2006).
12. Bertsimas, D. J. and van Ryzin, G., “A stochastic and dynamic vehicle routing problem in the Euclidean plane,” Oper. Res. 39 (4), 601–615 (1991).
13. Bertsimas, D. J. and van Ryzin, G., “Stochastic and dynamic vehicle routing in the Euclidean plane with wultiple capacitated vehicles,” Oper. Res. 41 (1), 60–76 (1993).
14. Bhadauria, D., Tekdas, O. and Isler, V., “Robotic data mules for collecting data over sparse sensor fields,” J. Field Robot. 28 (3), 388–404 (2011).
15. Bopardikar, S., Smith, S., Bullo, F. and Hespanha, J., “Dynamic vehicle routing for translating demands: Stability analysis and receding-horizon policies,” IEEE Trans. Autom. Control 55 (11), 2554–2569 (Nov. 2010).
16. Borenstein, J. and Koren, Y., “The vector field histogram-fast obstacle avoidance for mobile robots,” IEEE Trans. Robot. Autom. 7 (3), 278–288 (Jun. 1991).
17. Bullo, F., Frazzoli, E., Pavone, M., Savla, K. and Smith, S., “Dynamic vehicle routing for robotic systems,” Proc. IEEE 99 (9), 1482–1504 (Sep. 2011).
18. Chakravarthy, A. and Ghose, D., “Obstacle avoidance in a dynamic environment: A collision cone approach,” IEEE Trans. Syst. Man, Cybern. - Part A: Syst. Humans 28 (5), 562–574 (Sep. 1998).
19. Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E. and Thrun, S., Principles of Robot Motion: Theory, Algorithms, and Implementations (MIT Press, Cambridge, MA, Jun. 2005).
20. Christofides, N., “Technical note–bounds for the travelling-salesman problem,” Oper. Res. 20 (5), 1044–1056 (1972).
21. Cobano, J., Conde, R., Alejo, D. and Ollero, A., “Path Planning Based on Genetic Algorithms and the Monte-Carlo Method to Avoid Aerial Vehicle Collisions Under Uncertainties,” Proceedings of the IEEE International Conferenceon Robotics and Automation ICRA2011 (May 2011) pp. 4429–4434.
22. Comarela, G., Gonçalves, K., Pappa, G. L., Almeida, J. and Almeida, V., “Robot Routing in Sparse Wireless Sensor Networks with Continuous Ant Colony Optimization,” Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation GECCO2011, New York, NY, USA: ACM (2011).
23. Dantzig, G. B. and Ramser, J. H., “The truck dispatching problem,” Manag. Sci. 6 (1), 80–91 (1959).
24. de Berg, M., Gudmundsson, J., Katz, M. J., Levcopoulos, C., Overmars, M. H. and van der Stappen, A. F., “TSP with neighborhoods of varying size,” J. Algorithms 57, 22–36 (Sep. 2005).
25. Desai, J. P. and Kumar, V., “Motion planning for cooperating mobile manipulators,” J. Robot. Syst. 16 (10), 557–579 (1999).
26. Dubins, L. E., “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents,” Am. J. Math. 79 (3), 497–516 (1957).
27. Dumitrescu, A. and Mitchell, J. S., “Approximation algorithms for TSP with neighborhoods in the plane,” J. Algorithms 48 (1), 135–159 (2003). Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms.
28. Elbassioni, K., Fishkin, A. and Sitters, R., “On Approximating the TSP with Intersecting Neighborhoods,” In: Algorithms and Computation (Asano, T., ed.) Lecture Notes in Computer Science, vol. 4288 (Springer, Berlin, Heidelberg, 2006) pp. 213–222.
29. Elbassioni, K. M., Fishkin, A. V., Mustafa, N. H. and Sitters, R., “Approximation Algorithms for Euclidean Group TSP,” In: Automata, Languages and Programming (Caires, L., Italiano, G. F., Monteiro, L., Palamidessi, C. and Yung, M., eds.) Lecture Notes in Computer Science, vol. 3580 (Springer, Berlin, Heidelberg, 2005) pp. 1115–1126.
30. Enright, J. and Frazzoli, E., “Cooperative UAV Routing with Limited Sensor Range,” Proceedings of the AIAA Conference on Guidance, Navigation and Control, Keystone, CO, USA (2006).
31. Enright, J. J., Savla, K., Frazzoli, E. and Bullo, F., “Stochastic and dynamic routing problems for multiple UAVs,” AIAA J. Guidance, Control, Dyn. 32 (4), 1152–1166 (2009).
32. Fiorini, P. and Shiller, Z., “Motion planning in dynamic environments using velocity obstacles,” Int. J. Robot. Res. 17 (7), 760–772 (1998).
33. Fox, D., Burgard, W. and Thrun, S., “The dynamic window approach to collision avoidance,” IEEE Robot. Autom. Mag. 4 (1), 23–33 (1997).
34. Frazzoli, E. and Bullo, F., “Decentralized Algorithms for Vehicle Routing in a Stochastic Time-Varying Environment,” Proceedings of the 43^{rd} IEEE Conference on Decision and Control CDC2004, vol. 4 (Dec. 2004) pp. 3357–3363.
35. Frederickson, G. N., Hecht, M. S. and Kim, C. E., “Approximation algorithms for some routing problems,” SIAM J. Comput. 7 (2), 178–193 (1978).
36. Gal, O., Shiller, Z. and Rimon, E., “Efficient and Safe on-Line Motion Planning in Dynamic Environments,” Proceedings of the IEEE International Conference on Robotics and Automation (2009) pp. 88–93.
37. Gentilini, I., Margot, F. and Shimada, K., “The travelling salesman problem with neighbourhoods: MINLP solution,” Optim. Methods Softw. 28 (2), 364–378 (2013).
38. Gudmundsson, J. and Levcopoulos, C., “A fast approximation algorithm for TSP with neighborhoods,” Nordic J. Comput. 6, 469–488 (Dec. 1999).
39. Hota, S. and Ghose, D., “Optimal Path Planning for an Aerial Vehicle in 3D Space,” Proceedings of IEEE Conference on Decision and Control CDC (Dec. 2010) pp. 4902–4907.
40. Isaacs, J. T., Klein, D. J. and Hespanha, J. P., “Algorithms for the Traveling Salesman Problem With Neighborhoods Involving a Dubins Vehicle,” Proceedings of the IEE American Control Conference ACC2011 (2011), pp. 1704–1709.
41. Isaiah, P. and Shima, T., “Motion planning algorithms for the Dubins travelling salesperson problem,” Automatica 53 (0), 247–255 (2015).
42. Jaillet, L., Cortés, J. and Siméon, T., “Sampling-based path planning on configuration-space costmaps,” IEEE Trans. Robot. 26 (4), 635–646 (2010).
43. Jaillet, P. and Wagner, M. R., “Online Vehicle Routing Problems: A Survey,” In: The Vehicle Routing Problem: Latest Advances and New Challenges (Golden, B., Raghavan, S., Wasil, E., Sharda, R. and Voß, S., eds.) Operations Research/Computer Science Interfaces Series, vol. 43 (Springer, USA, 2008) pp. 221–237.
44. Karaman, S. and Frazzoli, E., “Optimal Kinodynamic Motion Planning Using Incremental Sampling-Based Methods,” Proceedings of the IEEE Conference on Decision and Control CDC2010 (Dec. 2010) pp. 7681–7687.
45. Khatib, O., “Real-time obstacle avoidance for manipulators and mobile robots,” Int. J. Robot. Res. 5 (1), 90–98 (1986).
46. Kim, D., Uma, R., Abay, B., Wu, W., Wang, W. and Tokuta, A., “Minimum latency multiple data MULE trajectory planning in wireless sensor networks,” IEEE Trans. Mobile Comput. 13 (4), 838–851 (Apr. 2014).
47. Koren, Y. and Borenstein, J., “Potential Field Methods and their Inherent Limitations for Mobile Robot Navigation,” Proceedings of the IEEE International Conference on Robotics and Automation (1991) pp. 1398–1404.
48. Kuwata, Y., Fiore, G., Teo, J., Frazzoli, E. and How, J., “Motion Planning for Urban Driving Using RRT,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS2008 (Sep. 2008) pp. 1681–1686.
49. LaValle, S. M., Planning Algorithms (Cambridge University Press, New York, NY, USA, 2006).
50. LaValle, S. M. and Kuffner, J., J. J., “Randomized Kinodynamic Planning,” Proceedings of the International Conference on Robotics and Automation (1999) pp. 473–479.
51. Le Ny, J., Performance Optimization for Unmanned Vehicle Systems Ph.D. Thesis (Cambridge, MA: Massachusetts Institute of Technology, 2008).
52. Le Ny, J. and Feron, E., “An Approximation Algorithm for the Curvature-Constrained Traveling Salesman Problem,” Proceedings of the 43rd Annual Allerton Conference on Communications, Control and Computing (2005).
53. Le Ny, J., Feron, E. and Frazzoli, E., “On the dubins traveling salesman problem,” IEEE Trans. Autom. Control 57 (1), 265–270 (Jan. 2012).
54. Le Ny, J., Frazzoli, E. and Feron, E., “The Curvature-Constrained Traveling Salesman Problem for High Point Densities,” Proceedings of the 46th IEEE Conference on Decision and Control CDC2007 (Dec. 2007) pp. 5985–5990.
55. Lin, S. and Kernighan, B. W., “An effective heuristic algorithm for the traveling-salesman problem,” Oper. Res. 21 (2), 498–516 (1973).
56. Lozano-Pérez, T. and Wesley, M. A., “An algorithm for planning collision-free paths among polyhedral obstacles,” Commun. ACM 22 (10), 560–570 (1979).
57. Ma, X. and Castañón, D. A., “Receding Horizon Planning for Dubins Traveling Salesman Problems,” Proceedings of the 45th IEEE Conference on Decision and Control CDC2006 (Dec. 2006) pp. 5453–5458.
58. Macharet, D. G., Alves Neto, A. and Campos, M. F. M., “Feasible UAV Path Planning Using Genetic Algorithms and Bézier Curves,” Proceedings of the 20th Brazilian Conference on Advances in Artificial Intelligence SBIA2010 Berlin, Heidelberg: Springer-Verlag (2010) pp. 223–232.
59. Macharet, D. G., Alves Neto, A., da Camara Neto, V. F. and Campos, M. F. M., “Nonholonomic Path Planning Optimization for Dubins' Vehicles,” Proceedings of the IEEE International Conference on Robotics and Automation ICRA2011 (May 2011) pp. 4208–4213.
60. Macharet, D. G., Alves Neto, A., da Camara Neto, V. F. and Campos, M. F. M., “An Evolutionary Approach for the Dubins' Traveling Salesman Problem with Neighborhoods,” Proceedings of the 21th Genetic and Evolutionary Computation Conference GECCO (2012).
61. Macharet, D. G., Alves Neto, A., da Camara Neto, V. F. and Campos, M. F. M., “Efficient Target Visiting Path Planning for Multiple Vehicles with Bounded Curvature,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS (Nov. 2013) pp. 3830–3836.
62. Macharet, D. G., Monteiro, J. W., Mateus, G. R. and Campos, M. F., “Bi-objective data gathering path planning for vehicles with bounded curvature,” Comput. Oper. Res. 84, 195–204 (2017).
63. Macharet, D. G., Monteiro, J. W. G., Mateus, G. R. and Campos, M. F. M., “Time-Optimized Routing Problem for Vehicles with Bounded Curvature,” Proceedings of the XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium LARS/SBR (Oct. 2016).
64. Macharet, D. G., Neto, A., da Camara Neto, V. and Campos, M., “Data Gathering Tour Optimization for Dubins' Vehicles,” Proceedings of the IEEE Congress on Evolutionary Computation CEC (Jun. 2012) pp. 1–8.
65. Mahmoodi, M., Alipour, K. and Mohammadi, H. B., “KidVO: A kinodynamically consistent algorithm for online motion planning in dynamic environments,” Ind. Robot: Int. J. 43 (1), 33–47 (01 2016).
66. Marble, J. D. and Bekris, K., “Towards Small Asymptotically Near-Optimal Roadmaps,” Proceedings of the IEEE International Conference on Robotics and Automation ICRA (2012) pp. 2557–2562.
67. Mata, C. S. and Mitchell, J. S. B., “Approximation Algorithms for Geometric Tour and Network Design Problems,” Proceedings of the 11th Annual Symposium on Computational Geometry SCG1995, New York, NY, USA: ACM (1995) pp. 360–369.
68. Medeiros, A. and Urrutia, S., “Discrete optimization methods to determine trajectories for Dubins' vehicles,” Electron. Notes Discrete Math. 36, 17–24 (2010). ISCO 2010 - International Symposium on Combinatorial Optimization.
69. Mitchell, J. S. B., “A PTAS for TSP with Neighborhoods Among Fat Regions in the Plane,” Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms SODA2007, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics (2007) pp. 11–18.
70. Moore, B. and Passino, K., “Distributed task assignment for mobile agents,” IEEE Trans. Autom. Control 52 (4), 749–753 (Apr. 2007).
71. Moscato, P. and Cotta, C., “A Modern Introduction to Memetic Algorithms,” In: Handbook of Metaheuristics (Gendreau, M. and Potvin, J.-Y., eds.) International Series in Operations Research & Management Science, vol. 146, (Springer, USA, 2010) pp. 141–183.
72. Noon, C. E. and Bean, J. C., “An efficient transformation of the generalized traveling salesman problem. Technical Report Technical Report 91-26, University of Michigan (1991).
73. Obermeyer, K. J., “Path planning for a UAV Performing Reconnaissance of Static Ground Targets in Terrain,” Proceedings of the AIAA Conference on Guidance, Navigation and Control, Chicago, IL, USA (Aug. 2009).
74. Obermeyer, K. J., Oberlin, P. and Darbha, S., “Sampling-Based Roadmap Methods for a Visual Reconnaissance UAV,” Proceedings of the AIAA Conference on Guidance, Navigation and Control, Toronto, ON, Canada (Aug. 2010).
75. Owen, M., Beard, R. and McLain, T., “Implementing Dubins Airplane Paths on Fixed-Wing UAVs,” In: Handbook of Unmanned Aerial Vehicles (Valavanis, K. P. and Vachtsevanos, G. J., eds.) (Springer, Netherlands, 2014) pp. 1677–1701.
76. Pavone, M., Bisnik, N., Frazzoli, E. and Isler, V., “A stochastic and dynamic vehicle routing problem with time windows and customer impatience,” Mobile Netw. Appl. 14, 350–364 (Jun. 2009).
77. Pavone, M. and Frazzoli, E., “Dynamic Vehicle Routing with Stochastic Time Constraints,” Proceedings of IEEE International Conference on Robotics and Automation ICRA2010 (May 2010) 1460–1467.
78. Pavone, M., Frazzoli, E. and Bullo, F., “Adaptive and distributed algorithms for vehicle routing in a stochastic and dynamic environment,” IEEE Trans. Autom. Control 56 (6), 1259–1274 (Jun. 2011).
79. Psaraftis, H. N., “Dynamic Vehicle Routing Problems,” In: Vehicle Routing: Methods and Studies (Golden, B. L. and Assad, A. A., eds.) Studies in Management Science and Systems, vol. 16 (North-Holland, Amsterdam, 1988) pp. 223–248.
80. Rathinam, S., Sengupta, R. and Darbha, S., “A resource allocation algorithm for multivehicle systems with nonholonomic constraints,” IEEE Trans. Autom. Sci. Eng. 4 (1), 98–104 (Jan. 2007).
81. Reeds, J. A. and Shepp, L. A., “Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145 (2), 367–393 (1990).
82. Rosen, K. H., Discrete Mathematics and Its Applications, 7th ed. (McGraw-Hill Higher Education, Boston, 2012).
83. Safra, S. and Schwartz, O., “On the complexity of approximating TSP with neighborhoods and related problems,” Comput. Complexity 14, 281–307 (Mar. 2006).
84. Savla, K., Bullo, F. and Frazzoli, E., “On Traveling Salesperson Problems for Dubins' Vehicle: Stochastic And Dynamic Environments,” Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference CDC-ECC2005 (Dec. 2005) pp. 4530–4535.
85. Savla, K., Frazzoli, E. and Bullo, F., “On the Point-to-Point and Traveling Salesperson Problems for Dubins' Vehicle,” Proceedings of the IEE American Control Conference ACC2005, vol. 2 (Jun. 2005) pp. 786–791.
86. Shima, T., Rasmussen, S. and Gross, D., “Assigning micro UAVs to task tours in an Urban terrain,” IEEE Trans. Control Systems Technol. 15 (4), 601–612 (Jul. 2007).
87. Shkel, A. M. and Lumelsky, V., “Classification of the Dubins set,” Robot. Auton. Syst. 34 (4), 179–202 (2001).
88. Siegwart, R., Nourbakhsh, I. R. and Scaramuzza, D., Introduction to Autonomous Mobile Robots, 2nd ed. (MIT Press, Cambridge, MA, USA, 2011).
89. Smith, S., Bopardikar, S. and Bullo, F., “A Dynamic Boundary Guarding Problem with Translating Targets,” Proceedings of the 48th IEEE Conference on Decision and Control held jointly with the 28th Chinese Control Conference CDC/CCC2009 (Dec. 2009) pp. 8543–8548.
90. Smith, S. L., Pavone, M., Bullo, F. and Frazzoli, E., “Dynamic Vehicle Routing with Priority Classes of Stochastic Demands,” SIAM J. Control Optim. 48 (5), 3224–3245 (2010).
91. Snape, J., van den Berg, J., Guy, S. J. and Manocha, D., “The hybrid reciprocal velocity obstacle,” IEEE Trans. Robot. 27 (4), 696–706 (2011).
92. Sofge, D., Schultz, A. and DeJong, K., “Evolutionary Computational Approaches to Solving the Multiple Traveling Salesman Problem Using a Neighborhood Attractor Schema,” Proceedings of the Applications of Evolutionary Computing on EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN, London, UK: Springer-Verlag (2002) pp. 153–162.
93. Takahashi, O. and Schilling, R. J., “Motion planning in a plane using generalized voronoi diagrams,” IEEE Trans. Robot. Autom. 5 (2), 143–150 (Apr. 1989).
94. Tang, Z. and Özgüner, Ü., “Motion planning for multitarget surveillance with mobile sensor agents,” IEEE Trans. Robot. 21 (5), 898–908 (Oct. 2005).
95. Tekdas, O., Isler, V., Lim, J. and Terzis, A., “Using mobile robots to harvest data from sensor fields,” IEEE Wireless Commun. 16 (1), 22–28 (Feb. 2009).
96. Todorov, E. and Li, W., “A Generalized Iterative LQG Method for Locally-Optimal Feedback Control of Constrained Nonlinear Stochastic Systems,” Proceedings of the American Control Conference ACC, vol. 1 (Jun. 2005) pp. 300–306.
97. Toth, P. and Vigo, D., eds., The Vehicle Routing Problem (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001).
98. Valle, C. A., da Cunha, A. S., Aioffi, W. M. and Mateus, G. R., “Algorithms for Improving The Quality of Service in Wireless Sensor Networks with Multiple Mobile Sinks,” Proceedings of the 11th International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems MSWiM2008, New York, NY, USA: ACM (2008) pp. 239–243.
99. Van Den Berg, J., Guy, S. J., Lin, M. and Manocha, D., “Optimal Reciprocal Collision Avoidance for Multi-Agent Navigation,” Proceedings of the IEEE International Conference on Robotics and Automation (2010).
100. van den Berg, J., Guy, S. J., Lin, M. and Manocha, D., “Reciprocal n-Body Collision Avoidance. In: Robotics Research: The 14th International Symposium ISRR (Pradalier, C., Siegwart, R. and Hirzinger, G., eds.) (Springer, Berlin Heidelberg, 2011).
101. van den Berg, J., Lin, M. and Manocha, D., “Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation,” Proceedings of the IEEE International Conference on Robotics and Automation (2008) pp. 1928–1935.
102. Váňa, P., Path Planning for Non-Holonomic Vehicle in Surveillance Missions Master's Thesis (Czech Republic: Czech Technical University in Prague, 2015).
103. Vána, P. and Faigl, J., “On the Dubins Traveling Salesman Problem with Neighborhoods,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS (Sep. 2015) pp. 4029–4034.
104. Wilkie, D., Van den Berg, J. and Manocha, D., “Generalized Velocity Obstacles,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2009) pp. 5573–5578.
105. Wu, F.-J., Huang, C.-F. and Tseng, Y.-C., “Data Gathering by Mobile Mules in a Spatially Separated Wireless Sensor Network,” Proceedings of the 10^{th} International Conference on Mobile Data Management: Systems, Services and Middleware MDM2009, Washington, DC, USA: IEEE Computer Society (2009) pp. 293–298.
106. Yu, X. and Hung, J. Y., “A Genetic Algorithm for the Dubins Traveling Salesman Problem,” Proceedings of the IEEE International Symposium on Industrial Electronics ISIE (May 2012) pp. 1256–1261.
107. Yuan, B., Orlowska, M. and Sadiq, S., “Finding the Optimal Path in 3D Spaces Using EDAs — The Wireless Sensor Networks Scenario,” Proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms, Part I ICANNGA2007 (Springer-Verlag, Berlin, Heidelberg, 2007) pp. 536–565.
108. Yuan, B., Orlowska, M. and Sadiq, S., “On the optimal robot routing problem in wireless sensor networks,” IEEE Trans. Knowl. Data Eng. 19 (9), 1252–1261 (Sep. 2007).