Skip to main content Accessibility help
×
Home

A survey on snake robot modeling and locomotion

  • Aksel Andreas Transeth (a1), Kristin Ytterstad Pettersen (a2) and Pål Liljebäck (a2)

Summary

Snake robots have the potential to make substantial contributions in areas such as rescue missions, firefighting, and maintenance where it may either be too narrow or too dangerous for personnel to operate. During the last 10–15 years, the published literature on snake robots has increased significantly. The purpose of this paper is to give a survey of the various mathematical models and motion patterns presented for snake robots. Both purely kinematic models and models including dynamics are investigated. Moreover, the different approaches to biologically inspired locomotion and artificially generated motion patterns for snake robots are discussed.

Copyright

Corresponding author

*Corresponding author. E-mail: Aksel.A.Transeth@sintef.no

References

Hide All
1.Miller, G., “Snake Robots for Search and Rescue,” In: Neurotechnology for Biomimetic Robots (MIT Press, Cambridge, MA, USA, 2002) pp. 271284.
2.Gray, J., “The mechanism of locomotion in snakes,” J. Exp. Biol., 23 (2), 101120 (1946).
3.Hirose, S., Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. (Oxford University Press, Oxford, 1993).
4.Wiriyacharoensunthorn, P. and Laowattana, S., “Analysis and Design of a Multi-Link Mobile Robot (Serpentine),” Proceedings of the IEEE International Conference on Industrial Technology, Bangkok, Thailand, Vol. 2 (Dec. 2002) pp. 694699.
5.Lewis, M. and Zehnpfennig, D., “R7: A Snake-Like Robot for 3-D Visual Inspection,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Munich Germany, Vol. 2 (Sept. 1994) pp. 13101317.
6.Worst, R. and Linnemann, R., “Construction and Operation of a Snake-Like Robot,” Proceedings of IEEE International Joint Symposium on Intelligence and Systems, Rockville, MD (Nov. 1996) pp. 164169.
7.Ma, S., “Analysis of Snake Movement Forms for Realization of Snake-Like Robots,” Proceedings of IEEE International Conference on Robotics and Automation, Detroit, MI, Vol. 4 (May 1999) pp. 30073013.
8.Ma, S., Araya, H., and Li, L., “Development of a Creeping Snake-Robot,” Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, Banff, Alberta, Canada (Jul.–Aug. 2001) pp. 7782.
9.Lu, Y., Ma, S., Li, B. and Chen, L., “Ground Condition Sensing of a Snake-Like Robot,” Proceedings of IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, Hunan, China, Vol. 2 (Oct. 2003) pp. 10751080.
10.Xinyu, L. and Matsuno, F., “Control of Snake-Like Robot Based on Kinematic Model with Image Sensor,” Proceedings IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, Hunan, China, Vol. 1 (Oct. 2003) pp. 347352.
11.Kamegawa, T., Yarnasaki, T., Igarashi, H. and Matsuno, F., “Development of the Snake-Like Rescue Robot ‘Kohga’,” Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, Vol. 5 (Apr. 2004) pp. 50815086.
12.Chirikjian, G. and Burdick, J., “A modal approach to hyper-redundant manipulator kinematics,” IEEE Trans. Robot. Autom. 10 (3), 343354 (Jun. 1994).
13.Krishnaprasad, P. and Tsakiris, D., “G-snakes: Nonholonomic Kinematic Chains on Lie Groups,” Proceedings of 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, Vol. 3 (Dec. 1994) pp. 29552960.
14.Ostrowski, J. and Burdick, J., “Gait Kinematics for a Serpentine Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, USA, Vol. 2 (Apr. 1996) pp. 12941299.
15.Ma, S., Tadokoro, N., Li, B. and Inoue, K., “Analysis of Creeping Locomotion of a Snake Robot on a Slope,” Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan (Sep. 2003) pp. 20732078.
16.Shan, Y. and Koren, Y., “Design and motion planning of a mechanical snake,” IEEE Trans. Syst. Man Cyb. 23 (4), 10911100 (Jul.–Aug. 1993).
17.Ohno, H. and Hirose, S., “Design of Slim Slime Robot and Its Gait of Locomotion,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Wailea, Hawaii, Vol. 2 (Nov. 2001) pp. 707715.
18.Ma, S., “Analysis of creeping locomotion of a snake-like robot,” Adv. Rob. 15 (2), 205224 (2001).
19.Saito, M., Fukaya, M. and Iwasaki, T., “Serpentine locomotion with robotic snakes,” IEEE Contr. Syst. Mag. 22 (1), 6481 (Feb. 2002).
20.Grabec, I., “Control of a Creeping Snake-Like Robot,” Proceedings of 7th International Workshop on Advanced Motion Control, Maribor, Slovenia (Jul. 2002) pp. 526–513.
21.McIsaac, K. and Ostrowski, J., “Motion planning for anguilliform locomotion,” IEEE Trans. Robot. Autom. 19 (4), 637–625 (Aug. 2003).
22.Chirikjian, G. and Burdick, J., “The kinematics of hyper-redundant robot locomotion,” IEEE Trans. Robot. Autom. 11 (6), 781793, (Dec. 1995).
23.Mattison, C., The Encyclopaedia of Snakes (Cassell Paperbacks, London, 2002).
24.Bauchot, R., Snakes: A Natural History, New York, USA (Sterling Publishing Company, 1994).
25.Dowling, K. J., ‘Limbless Locomotion. Learning to Crawl with a Snake Robot Ph.D. Dissertation (Carnegie Mellon University, Dec. 1997).
26.Burdick, J., Radford, J. and Chirikjian, G., “A ‘Sidewinding’ Locomotion Gait for Hyper-Redundant Robots,” Proceedings of IEEE International Conference on Robotics and Automation, Atlanta, GA, USA (May 1993) pp. 101106.
27.Murray, R. M., Li, Z. and Sastry, S. S., A Mathematical Introduction to Robotic Manipulation, 1st ed. (CRC Press, Florida, USA, 1994).
28.Poi, G., Scarabeo, C. and Allotta, B., “Traveling Wave Locomotion Hyper-Redundant Mobile Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Lueven, Belgium, Vol. 1 (May 1998) pp. 418423.
29.Liljebäck, P., Stavdahl, Ø. and Pettersen, K. Y., “Modular Pneumatic Snake Robot: 3D Modelling, Implementation and Control,” Proceedings of 16th IFAC World Congress, Prague, Czech Republic (Jul. 2005).
30.Kolmanovsky, I. and McClamroch, N., “Developments in nonholonomic control problems,” IEEE Contr. Syst. Mag. 15 (6), 2036, (Dec. 1995).
31.Bloch, A. M., Baillieul, J., Crouch, P. and Marsden, J., Nonholonomic Mechanics and Control, New York, USA (Springer-Verlag, 2003).
32.Kelly, S. and Murray, R. M., “Geometric phases and robotic locomotion,” J. Rob. Syst. 12 (6), 417431 (1995).
33.Chirikjian, G. and Burdick, J., “Kinematics of Hyper-Redundant Robot Locomotion with Applications to Grasping,” Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, CA, USA (Apr. 1991) pp. 720725.
34.Chirikjian, G. S., Theory and Applications of Hyper-Redundant Robotic Manipulators Ph.D. Dissertation (California Institute of Technology, Pasadena, California, 1992).
35.Chirikjian, G. S., “Design and analysis of some nonanthropomorphic, biologically inspired robots: An overview,” J. Rob. Syst. 18 (12), 701713 (Dec. 2001).
36.Yamada, H. and Hirose, S., “Study on the 3d Shape of Active Cord Mechanism,” Proceedings of IEEE International Conference on Robotics and Automation, Orlando, FL, USA (2006) pp. 28902895.
37.Do Carmo, M. P., Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs, New Jersey, 1976).
38.Wang, Y. and Chirikjian, G., “Workspace generation of hyper-redundant manipulators as a diffusion process on se(n),” IEEE Trans. Rob. Automat. 20 (3), 399408 (Jun. 2004).
39.Robinson, G. and Davies, J. B. C., “Continuum Robots – A State of the Art,” Proceedings of IEEE International Conference on Robotics and Automation, Detroit, MI, USA, Vol. 4 (May 1999) pp. 28492854.
40.Jones, B. and Walker, I., “Kinematics for multisection continuum robots,” IEEE Transactions on Robotics, 22 (1), 4355 (Feb. 2006).
41.Hannan, M. and Walker, I., “Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots,” J. Rob. Syst. 20 (2), 4563 (Feb. 2003).
42.Gravagne, I. and Walker, I., “Kinematic Transformations for Remotely-Actuated Planar Continuum Robots,” Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, Vol. 1 (2000) pp. 1926.
43.Gravagne, I. and Walker, I., “On the Kinematics of Remotely-Actuated Continuum Robots,” Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, Vol. 3 (2000) pp. 25442550.
44.Mochiyama, H. and Kobayashi, H., “The Shape Jacobian of a Manipulator with Hyper Degrees of Freedom,” Proceedings of IEEE International Conference on Robotics and Automation, Detroit, MI, USA, Vol. 4 (1999) pp. 28372842.
45.Mochiyama, H., Shimemura, E. and Kobayashi, H., “Direct Kinematics of Manipulators with Hyper Degrees of Freedom and Frenet–Serret Formula,” Proceedings of IEEE International Conference on Robotics and Automation, Lueven, Belgium, Vol. 2 (May 1998) pp. 16531658.
46.Mochiyama, H., Shimemura, E. and Kobayashi, H., “Shape Correspondence Between a Spatial Curve and a Manipulator with Hyper Degrees of Freedom,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada, Vol. 1 (1998) pp. 161166.
47.Prautsch, P. and Mita, T., “Control and Analysis of the Gait of Snake Robots,” Proceedings of IEEE International Conference on Control Applications, Kohala Coast, HI (1999) pp. 502507.
48.Ma, S., Ohmameuda, Y., Inoue, K. and Li, B., “Control of a 3-Dimensional Snake-Like Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Vol. 2 (Sep. 2003) pp. 20672072.
49.Egeland, O. and Gravdahl, J. T., Modeling and Simulation for Automatic Control (Marine Cybernetics, Trondheim, Norway, 2002).
50.Ma, S., Ohmameuda, Y. and Inoue, K., “Dynamic Analysis of 3-Dimensional Snake Robots,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan (2004) pp. 767772.
51.Transeth, A. A., Leine, R. I., Glocker, Ch. and Pettersen, K. Y., “Non-Smooth 3D Modeling of a Snake Robot with Frictional Unilateral Constraints,” Proceedings of IEEE International Conference on Robotics and Biomimetics, Kunming, China (Dec. 2006) pp. 11811188.
52.Transeth, A. A., Leine, R. I., Glocker, Ch. and Pettersen, K. Y., “Non-Smooth 3D Modeling of a Snake Robot with External Obstacles,” Proceedings of IEEE International Conference on Robotics and Biomimetics, Kunminga, China (Dec. 2006) pp. 11891196.
53.Liljebäck, P., Modular Snake-Robot: Modeling, Implementation and Control of a Modular and Pressure Based Snake-Robot Master's Thesis (Norwegian University of Technology and Science, Trondheim, Norway, 2004).
54.Chernousko, F., “Snake-Like Motions of Multibody Systems Over a Rough Plane,” Proceedings of Second International Conference on Control of Oscillations and Chaos, Saint-Petersburg, Russia (Jul. 2000) pp. 321326.
55.Chernousko, F., “Modelling of snake-like locomotion,” Appl. Math. Comput. 164 (2), 415434 (May 2005).
56.Ma, S., Li, W. and Wang, Y., “A Simulator to Analyze Creeping Locomotion of a Snake-Like Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, Vol. 4 (2001) pp. 36563661.
57.McIsaac, K. and Ostrowski, J., “A Geometric Approach to Anguilliform Locomotion: Modelling of an Underwater Eel Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Detroit, MI, USA, Vol. 4 (May 1999) pp. 28432848.
58.McIsaac, K. and Ostrowski, J., “Motion Planning for Dynamic Eel-Like Robots,” Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, Vol. 2 (2000) pp. 16951700.
59.Ayers, J., Wilbur, C. and Olcott, C., “Lamprey Robots,” Proceedings of International Symposium on Aqua Biomechanisms, Honolulu, HI, USA (2000) pp. 16.
60.Bloch, A., Krishnaprasad, P., Marsden, J. and Murray, R., “Nonholonomic Mechanical Systems with Symmetry,” Technical Report (California Institute of Technology, 1995).
61.Boyer, F., Porez, M. and Khalil, W., “Macro-continuous computed torque algorithm for a three-dimensional eel-like robot,” IEEE Trans. Robot. 22 (4), 763775 (2006).
62.Transeth, A. A., Liljebäck, P. and Pettersen, K. Y., “Snake Robot Obstacle Aided Locomotion: An Experimental Validation of a Non-Smooth Modeling Approach,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA (Oct.–Nov. 2007) pp. 25822589.
63.Chirikjian, G., “Hyper-redundant manipulator dynamics: A continuum approximation,” Adv. Rob. 9 (3), 217243 (1995).
64.Mochiyama, H., “Hyper-Flexible Robotic Manipulators,” IEEE International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan (Nov. 2005) pp. 4146.
65.Mochiyama, H. and Suzuki, T., “Kinematics and Dynamics of a Cable-Like Hyper-Flexible Manipulator,” Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Vol. 3 (Sep. 2003) pp. 36723677.
66.Mochiyama, H. and Suzuki, T., “Dynamics Modelling of a Hyper-Flexible Manipulator,” Proceedings of the 41st SICE Annual Conference, Osaka, Japan, Vol. 3 (Aug. 2002) pp. 15051510.
67.Gravagne, I., Rahn, C. and Walker, I., “Large deflection dynamics and control for planar continuum robots,” IEEE/ASME Trans. Mechatron. 8 (2), 299307 (Jun. 2003).
68.Wilson, J., Mahajan, U., Wainwright, S. A. and Croner, L., “A continuum model of elephant trunks,” J. Biomech. Eng. 113 (1), 7984 (Feb. 1991).
69.Yamada, H. and Hirose, S., “Development of practical 3-dimensional active cord mechanism ACM-R4,” J. Rob. Mechatronics 18 (3), 17 (2006).
70.Masayuki, A., Takayama, T. and Hirose, S., “Development of “Souryu-III”: Connected Crawler Vehicle for Inspection Inside Narrow and Winding Spaces,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, Sendai, Japan, Vol. 1 (2004), pp. 5257.
71.Mori, M. and Hirose, S., “Three-Dimensional Serpentine Motion and Lateral Rolling by Active Cord Mechanism ACM-R3,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland (2002) pp. 829834.
72.Ye, C., Ma, S., Li, B. and Wang, Y., “Turning and Side Motion of Snake-Like Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, Vol. 5 (2004) pp. 50755080.
73.Bayraktarouglu, Z., Butel, F., Blazevic, P. and Pasqui, V., “A Geometrical Approach to the Trajectory Planning of a Snake-Like Mechanism,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, Korea (Oct. 1999) pp. 13221327.
74.Rincon, D. and Sotelo, J., “Ver-Vite: Dynamic and experimental analysis for inchwormlike biomimetic robots,” IEEE Robot. Autom. Mag. 10 (4), 5357 (Dec. 2003).
75.Yim, M., “New Locomotion Gaits,” Proceedings of IEEE International Conference on Robotics and Automation, San Diego, CA, USA, Vol. 3 (May 1994) pp. 25082514.
76.Yim, M., Duff, D. and Roufas, K., “Walk on the wild side,” IEEE Rob. Automat. Mag. 9 (4), 4953 (Dec. 2002).
77.Nilsson, M., “Snake Robot Free Climbing,” Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, Vol. 4 (Apr. 1997) pp. 34153420.
78.Nilsson, M., “Snake robot – Free climbing,” IEEE Contr. Syst. Mag. 18 (1), 2126 (Feb. 1998).
79.Yamada, H., Chigisaki, S., Mori, M., Takita, K., Ogami, K. and Hirose, S., “Development of Amphibious Snake-Like Robot ACM-R5,” Proceedings of 36th International Symposium on Robotics, Tokyo, Japan (Nov.–Dec. 2005).
80.Togawa, K., Mori, M. and Hirose, S., “Study on Three-Dimensional Active Cord Mechanism: Development of ACM-R2,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, Vol. 3 (2000) pp. 22422247.
81.Dowling, K., “Limbless Locomotion: Learning to Crawl,” Proceedings of IEEE International Conference on Robotics and Automation, Detroit, MI, USA, Vol. 4 (1999) pp. 30013006.
82.Chen, L., Wang, Y., Ma, S. and Li, B.;, “Studies on Lateral Rolling Locomotion of a Snake Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain (2004) pp. 50705074.
83.Nilsson, M., “Serpentine Locomotion on Surfaces with Uniform Friction,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan (2004) pp. 17511755.
84.Date, H., Hoshi, Y. and Sampei, M., “Locomotion Control of a Snake-Like Robot Based on Dynamic Manipulability,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan (2000) pp. 22362241.
85.Date, H., Hoshi, Y., Sampei, M. and Shigeki, N., “Locomotion Control of a Snake Robot with Constraint Force Attenuation,” Proceedings of American Control Conference, Boston, MA, USA (2001) pp. 113118.
86.Ostrowski, J. and Burdick, J., “The geometric mechanics of undulatory robotic locomotion,” Int. J. Robot. Res. 17 (7), 683701 (1998).
87.McIsaac, K. A. and Ostrowski, J. P., “A framework for steering dynamic robotic locomotion systems,” Int. J. Robot. Res. 22 (2), 8397 (Feb. 2003).
88.Ma, S. and Tadokoro, N., “Analysis of creeping locomotion of a snake-like robot on a slope,” Autonom. Rob. 20, 1523 (2006).
89.Hirose, S. and Umetani, Y., “Kinematic Control of Active Cord-Mechanism with Tactile Sensors,” Proceedings of Second RoMAnSy Symposium, Warsaw (1976) pp. 241252.
90.Bayraktaroglu, Z. and Blazevic, P., “Understanding snakelike locomotion through a novel push-point approach,” J. Dyn. Syst. – Trans. ASME 127 (1), 146152 (Mar. 2005).
91.Bayraktaroglu, Z. Y., Kilicarslan, A., Kuzucu, A., Hugel, V. and Blazevic, P., “Design and Control of Biologically Inspired Wheel-Less Snake-Like Robot,” Proceedings of IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy (Feb. 2006) pp. 10011006.
92.Hirose, S. and Mori, M., “Biologically Inspired Snake-Like Robots,” Proceedings of IEEE International Conference on Robotics and Biomimetics, Shenyang, China (Aug. 2004) pp. 17.
93.Ohmameuda, Y. and Ma, S., “Control of a 3-Dimensional Snake-Like Robot for Analysis of Sinus-Lifting Motion,” Proceedings of 41st SICE Annual Conference, Osaka, Japan, Vol. 3 (2002) pp. 14871491.
94.Tanev, I., Ray, T. and Buller, A., “Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot,” IEEE Trans. Rob. 21 (4), 632645 (Aug. 2005).
95.Ye, C., Ma, S., Li, B. and Wang, Y., “Twist-Related Locomotion of a 3D Snake-Like Robot,” Proceedings of IEEE International Conference on Robotics and Biomimetics, Shenyang, China (Aug. 2004) pp. 589594.
96.Erkmen, I., Erkmen, A., Matsuno, F., Chatterjee, R. and Kamegawa, T., “Snake robots to the rescue!IEEE Rob. Automat. Mag. 9 (3), 1725 (2002).
97.Choset, H., “Snake robots at Carnegie Mellon University,” http://www.snakerobot.com/ (2007), online. Accessed September 29, 2007.
98.Miller, G., “Dr. Miller's snake robots,” http://www.snakerobots.com/ (2007), online. Accessed September 29, 2007.
99.Nilsson, M., “Ripple and Roll: Slip-Free Snake Robot Locomotion,” Proceedings of Mechatronical Computer Systems for Perception and Action, Piza, Italy (Feb. 1997).
100.Bayraktaroglu, Z., Butel, F., Pasqui, V. and Blazevic, P., “Snake-like locomotion: Integration of geometry and kineto-statics,” Adv. Rob. 14 (6), 447458 (2000).
101.McIsaac, K. A. and Ostrowski, J. P., “Motion Planning for Dynamic Eel-Like Robots,” Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, Vol. 2 (Apr. 2000) pp. 16951700.
102.Ito, K. and Fukumori, Y., “Autonomous Control of a Snake-Like Robot Utilizing Passive Mechanism,” Proceedings of IEEE International Conference on Robotics and Automation, Orlando, FL, USA (May 2006) pp. 381386.
103.Choset, H. and Lee, J. Y., “Sensor-based construction of a retract-like structure for a planar rod robot,” IEEE Trans. Robot. Autom. 17 (4), 435449 (2001).
104.Henning, W., Hickman, F. and Choset, H., “Motion Planning for Serpentine Robots,” Proceedings of ASCE Space and Robotics, Albuquerque, NM, USA (1998).
105.Sciavicco, L. and Siciliano, B., Modelling and Control of Robot Manipulators, 2nd ed. (McGraw Hill Inc., London, 1999).
106.Saito, M., Fukaya, M. and Iwasaki, T., “Serpentine locomotion with robotic snakes,” IEEE Contr. Syst. Mag. 22 (1), 6481 (Feb. 2002).
107.Spong, M. W., Hutchinson, S. and Vidyasagar, M., Robot Modeling and Control, New Jersey, USA (John Wiley & Sons, Inc., 2006).
108.Transeth, A. A., Leine, R. I., Glocker, C., Pettersen, K. Y. and Liljebäck, P., “Snake robot obstacle aided locomotion: Modeling, simulations, and experiments,” IEEE Trans. Robot. 24 (1), 88104 (Feb. 2008).
109.Transeth, A. A., van de Wouw, N., Pavlov, A., Hespanha, J. P. and Pettersen, K. Y., “Tracking Control for Snake Robot Joints,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA (Oct.–Nov. 2007) pp. 35393546.
110.Transeth, A. A., Leine, R. I., Glocker, C. and Pettersen, K. Y., “3D snake robot motion: Non-smooth modeling, simulations, and experiments,” IEEE Trans. Rob. 24 (2), 361376 (Apr. 2008).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed