Skip to main content

Time-optimal task scheduling for articulated manipulators in environments cluttered with obstacles

  • E. K. Xidias (a1), P. Th. Zacharia (a1) and N. A. Aspragathos (a1)

This paper proposes a new approach for solving a generalization of the task scheduling problem for articulated robots (either redundant or non-redundant), where the robot's 2D environment is cluttered with obstacles of arbitrary size, shape and location, while a set of task-points are located in the robot's free-space. The objective is to determine the optimum collision-free robot's tip tour through all task-points passing from each one exactly once and returning to the initial task-point. This scheduling problem combines two computationally NP-hard problems: the optimal scheduling of robot tasks and the collision-free motion planning between the task-points.

The proposed approach employs the bump-surface (B-Surface) concept for the representation of the 2D robot's environment by a B-Spline surface embedded in 3D Euclidean space. The time-optimal task scheduling is being searched on the generated B-Surface using a genetic algorithm (GA) with a special encoding in order to take into consideration the infinite configurations corresponding to each task-point. The result of the GA's searching constitutes the solution to the task scheduling problem and satisfies optimally the task scheduling criteria and objectives. Extensive experimental results show the efficiency and the effectiveness of the proposed method to determine the collision-free motion among obstacles.

Corresponding author
*Corresponding author. E-mail:
Hide All
1.Lawer, E., Lenstra, J., Kan, A. R. and Shmoys, D., The Travelling Salesman Problem (Wiley, Chichester, UK, 1985).
2.Latombe, J. C., Robot Motion Planning (Kluwer Academic Publishers, Boston, 1991).
3.Garey, M. R., Graham, R. L. and Johnson, D. S.. “Some NP-Complete Geometric Problems,” Proceedings of ACM Symposium on Theory of Computing, Hershey, Pennsylvania, United States (1976) pp. 1022.
4.Papadimitriou, C. H., “Euclidean TSP is NP-complete,” TCS 4, 237244 (1977).
5.Abdel-Malek, L. and Li, Z., “The application of inverse kinematics in the optimum sequencing of robot tasks,” Int. J. Prod. Res. 28 (1), 7590 (1990).
6.Petiot, J., Chedmail, P. and Haschoët, J.-Y., “Contribution to the scheduling of trajectories in robotics,” Robot. Cim-Int. Manuf. 14 (3), 237251 (1998).
7.Dubowsky, S. and Blubaugh, T., “Planning time-optimal robotic manipulator motions and work places for point-to-point tasks,” IEEE Trans. Robot Autom. 5 (3), 377381 (1989).
8.Zacharia, P. T. and Aspragathos, N. A., “Optimal robot task scheduling based on genetic algorithms,” Robot. Cim-Int. Manuf. 21 (1), 6779 (2005).
9.Rahmanian-Shahri, N. and Torch, I., “Collision avoidance control for redundant articulated robots,” Robotica 13 (2), 159168 (1995).
10.Mayorga, R. V., Jambi Sharifi, F. and Wong, A. K. C., “A fast approach for the robust trajectory planning of redundant robot manipulators,” J. Robot. Sys. 12 (2), 147161 (1995).
11.Chen, J.-L., Liu, J.-S., Lee, W.-C. and Liang, T.-C., “On-line multi-criteria based on collision-free posture generation of redundant manipulator in constraint workspace,” Robotica 20 (6), 625636 (2002).
12.Lozano–Perez, T., “Spatial planning: A configuration space approach,” IEEE T. Comput. C-32 (2), 108120 (1983).
13.Barraquand, J., Langlois, B. and Latombe, J.-C., “Numerical potential field techniques for robot path planning,” IEEE T. Syst. Man Cy. 22 (2), 224241 (1992).
14.Conkur, E. S., “Path following algorithm for highly redundant manipulators,” Robot Auton. Syst. 45 (1), 122e (2003).
15.Goldberg, D. E., Genetic Algorithm in Search, Optimization and Machine Learning (Addison Wesley, Reading, MA, 1989).
16.Michalewitz, Z., Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed. (Springer-Verlag, New York, 1996).
17.Liang, T.-C. and Liu, J.-S., “An improved trajectory planner for redundant manipulators in constrained workspace,” J. Robot. Syst. 16 (6), 339351 (1999).
18.Conkur, E. S., “Path planning using potential fields for highly redundant manipulators,” Robot Auton. Syst. 52 (2–3), 209228 (2005).
19.Nearchou, A. C. and Aspragathos, N. A., “A genetic path planning algorithm for redundant articulated robots,” Robotica. 15 (2), 213224 (1997).
20.Tian, L. and Collins, C., “Motion planning for redundant manipulators using a floating point genetic algorithm,” J. Intell. Robot. Syst. 38 (3–4), 297312 (2003).
21.Azariadis, P. and Aspragathos, N., “Obstacle representation by bump-surfaces for optimal motion-planning,” Robot Auton. Syst. 51 (2–3), 129150 (2005).
22.Piegl, L. and Tiller, W., The NURBS Book (Springer-Verlag, Berlin, Germany, 1997).
23.Xidias, E. K., Azariadis, P. N. and Aspragathos, N. A., “Energy-minimizing motion design for nonholonomic robots amidst moving obstacles,” Comput. Aided Des. Appl. 3 (1–4), 165174 (2006).
24.Xidias, E. K., Nearchou, A. C. and Aspragathos, Nikos A., “Routing and Scheduling for a Car-Like Robot in 2D Manufacturing Environment with Time Windows,” Ind. Robot. 36 (2), 176183 (2009).
25.Holland, J. H., Adaptation in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor, MI; 1975).
26.Thomsen, R., Fogel, G. and Krink, T., “A Clustal Alignment Improver using Evolutionary Algorithms,” Proceedings of the 2002 Congress on Evolutionary Computation—CEC'02, Honolulu, HI, USA (May 12–May 17 2002) pp. 309314.
27.Davis, L., “Applying Adaptive Algorithms to Epistatic Domains,” Proceedings of the International Joint Conference on Artificial Intelligence, Los Angeles, Calif (August 1985) pp. 162164.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 127 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th March 2018. This data will be updated every 24 hours.