Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T14:58:12.542Z Has data issue: false hasContentIssue false

A transformable wheel-spoke-paddle hybrid amphibious robot

Published online by Cambridge University Press:  22 December 2023

Yikai Ge
Affiliation:
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China Research Center of Marine Intelligent Equipment and Robot, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai, China
Feng Gao
Affiliation:
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China Research Center of Marine Intelligent Equipment and Robot, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai, China
Weixing Chen*
Affiliation:
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China Research Center of Marine Intelligent Equipment and Robot, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai, China
*
Corresponding author: Weixing Chen; Email: wxchen@sjtu.edu.cn

Abstract

The intricate water-land intermingled nature of wild environments necessitates robots to exhibit multimodal cross-domain mobility capabilities. This paper introduces a novel wheel-spoke-paddle hybrid amphibious robot (WSP-bot) that can operate on flat and rough terrains, water surfaces, and water-land transitional zones. The proposed robot relies on a propulsion mechanism called transformable wheel-spoke-paddle (WSP), which combines the stability of wheeled robots with the obstacle-climbing capability of legged robots, while also providing additional aquatic mobility. The utilization of a crank-slider-based transformation mechanism enables seamless switching between multiple motion modes. An analysis of mode transition and ground motion in spoke mode was conducted, along with an investigation of its obstacle-crossing capability. Simulations were performed for mode transition, ground locomotion, and obstacle-crossing, as well as propulsion of a single WSP module on water. Based on the above work, a prototype robot was manufactured. Prototype tests, including mode transition and mobility tests on land and water surfaces under multimodal states, confirmed the effectiveness of the proposed WSP-bot.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, S. C., Huang, K. J., Chen, W. H., Shen, S. Y., Li, C. H. and Lin, P. C., “Quattroped: A leg-wheel transformable robot,” IEEE/ASME Trans. Mechatron. 19(2), 730742 (2014). doi:10.1109/Tmech.2013.2253615.CrossRefGoogle Scholar
Kim, Y. S., Jung, G. P., Kim, H., Cho, K. J. and Chu, C. N., “Wheel transformer: A wheel-leg hybrid robot with passive transformable wheels,” IEEE Trans. Robot. 30(6), 14871498 (2014). doi:10.1109/Tro.2014.2365651.CrossRefGoogle Scholar
Xie, X. L., Gao, F., Huang, C. and Zeng, W., “Design and development of a new transformable wheel used in amphibious all-terrain vehicles (A-ATV),” J. Terramech. 69, 4561 (2017). doi:10.1016/j.jterra.2016.11.001.CrossRefGoogle Scholar
Schoeneich, P., Rochat, F., Nguyen, O. T.-D., Moser, R. and Mondada, F., “TRIPILLAR: A miniature magnetic caterpillar climbing robot with plane transition ability,” Robotica 29(7), 10751081 (2011). doi:10.1017/s0263574711000257.CrossRefGoogle Scholar
Bai, L., Guan, J., Chen, X. H., Hou, J. Z. and Duan, W. B., “An optional passive/active transformable wheel-legged mobility concept for search and rescue robots,” Robot. Auton. Syst. 107, 145155 (2018). doi:10.1016/j.robot.2018.06.005.CrossRefGoogle Scholar
Bhole, A., Turlapati, S. H., V.S., R., Dixit, J., Shah, S. V. and Krishna, K. M., “Design of a robust stair-climbing compliant modular robot to tackle overhang on stairs,” Robotica 37(3), 428444 (2018). doi:10.1017/s0263574718001108.CrossRefGoogle Scholar
Russo, M. and Ceccarelli, M., “A survey on mechanical solutions for hybrid mobile robots,” Robotics 9(2), (2020). doi:10.3390/robotics9020032.CrossRefGoogle Scholar
Rafeeq, M., Toha, S. F., Ahmad, S. and Razib, M. A., “Locomotion strategies for amphibious robots-A review,” IEEE Access 9, 2632326342 (2021). doi:10.1109/Access.2021.3057406.CrossRefGoogle Scholar
Crespi, A. and Ijspeert, A. J., “Online optimization of swimming and crawling in an amphibious snake robot,” IEEE Trans. Robot. 24(1), 7587 (2008). doi:10.1109/Tro.2008.915426.CrossRefGoogle Scholar
Crespi, A., Karakasiliotis, K., Guignard, A. and Ijspeert, A. J., “Salamandra robotica II: An amphibious robot to study salamander-like swimming and walking gaits,” IEEE Trans. Robot. 29(2), 308320 (2013). doi:10.1109/Tro.2012.2234311.CrossRefGoogle Scholar
Tadakuma, K., Tadakuma, R., Aigo, M., Shimojo, M., Higashimori, M., Kaneko, M., “"Omni-Paddle": Amphibious Spherical Rotary Paddle Mechanism,” IEEE International Conference on Robotics and Automation (ICRA) (2011).CrossRefGoogle Scholar
Yu, J. Z., Ding, R., Yang, Q. H., Tan, M., Wang, W. B. and Zhang, J. W., “On a bio-inspired amphibious robot capable of multimodal motion,” IEEE/ASME Trans. Mechatron. 17(5), 847856 (2012). doi:10.1109/Tmech.2011.2132732.CrossRefGoogle Scholar
Yu, J. Z., Ding, R., Yang, Q. H., Tan, M. and Zhang, J. W., “Amphibious pattern design of a robotic fish with wheel-propeller-fin mechanisms,” J. Field Robot. 30(5), 702716 (2013). doi:10.1002/rob.21470.CrossRefGoogle Scholar
Yang, Y., Zhou, G., Zhang, J., Cheng, S., Fu, M. and Ieee, “Design, Modeling and Control of A Novel Amphibious Robot with Dual-Swing-Legs Propulsion Mechanism,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015) pp. 559566.Google Scholar
Bruzzone, L. and Quaglia, G., “Review article: Locomotion systems for ground mobile robots in unstructured environments,” Mech. Sci. 3(2), 4962 (2012). doi:10.5194/ms-3-49-2012.CrossRefGoogle Scholar
Boxerbaum, A. S., Werk, P., Quinn, R. D., Vaidyanathan, R. and Ieee, “Design of an Autonomous Amphibious Robot for Surf Zone Operation: Part I - Mechanical Design for Multi-Mode Mobility,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2005) pp. 14591464.Google Scholar
Harkins, R., Ward, J., Vaidyanathan, R., Boxerbaum, A. S., Quinn, R. D. and Ieee, “Design of an Autonomous Amphibious Robot for Surf Zone Operations: Part II - Hardware, Control Implementation and Simulation,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2005) pp. 14651470.Google Scholar
Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown, H.B. Jr., McMordie, D., Saranli, U., Full, R. and D.E. Koditschek, “RHex: A biologically inspired hexapod runner,” Auton. Robot. 11(3), 207213 (2001). doi:10.1023/A:1012426720699.CrossRefGoogle Scholar
Saranli, U., Buehler, M. and Koditschek, D. E., “RHex: A simple and highly mobile hexapod robot,” Int. J. Robot. Res. 20(7), 616631 (2001). doi:10.1177/02783640122067570.CrossRefGoogle Scholar
Pei-Chun, L., Komsuoglu, H. and Koditschek, D. E., “Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits,” IEEE Trans. Robot. 22(5), 932943 (2006). doi:10.1109/tro.2006.878954.CrossRefGoogle Scholar
Spagna, J. C., Goldman, D. I., Lin, P. C., Koditschek, D. E. and Full, R. J., “Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain,” Bioinspir. Biomim. 2(1), 918 (2007). doi:10.1088/1748-3182/2/1/002.CrossRefGoogle ScholarPubMed
Song, X. G., Zhang, X. L., Meng, X. Y., Chen, C. J. and Huang, D. S., “Gait optimization of step climbing for a hexapod robot,” J. Field Robot. 39(1), 5568 (2022). doi:10.1002/rob.22037.CrossRefGoogle Scholar
Dudek, G., Giguere, P., Prahacs, C., Saunderson, S., Sattar, J., Torres-Mendez, L. A., M. Jenkin, A. German, A. Hogue, A. Ripsman, J. Zacher, E. Milios, H. Liu, P. Zhang, M. Buehler and C. Georgiades, “AQUA: An amphibious autonomous robot,” Computer 40(1), 4653 (2007). doi:10.1109/Mc.2007.6.CrossRefGoogle Scholar
Dey, B. B., Manjanna, S. and Dudek, G., “Ninja Legs: Amphibious One Degree of Freedom Robotic Legs,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013) pp. 56225628.Google Scholar
Zhou, F., Xu, X., Xu, H., Chang, Y., Wang, Q. and Chen, J., “Implementation of a reconfigurable robot to achieve multimodal locomotion based on three rules of configuration,” Robotica 38(8), 14781494 (2019). doi:10.1017/s0263574719001589.CrossRefGoogle Scholar
Luo, Z. R., Shang, J. Z., Wei, G. W. and Ren, L., “A reconfigurable hybrid wheel-track mobile robot based on Watt II six-bar linkage,” Mech. Mach. Theory 128, 1632 (2018). doi:10.1016/j.mechmachtheory.2018.04.020.CrossRefGoogle Scholar
Sun, Y. and Ma, S. G., “A versatile locomotion mechanism for amphibious robots: Eccentric paddle mechanism,” Adv. Robot. 27(8), 611625 (2013). doi:10.1080/01691864.2013.763750.CrossRefGoogle Scholar
Zhang, S. W., Liang, X., Xu, L. C. and Xu, M., “Initial development of a novel amphibious robot with transformable fin-leg composite propulsion mechanisms,” J. Bionic Eng. 10(4), 434445 (2013). doi:10.1016/S1672-6529(13)60247-4.CrossRefGoogle Scholar
Zhang, S. W., Zhou, Y. C., Xu, M., Liang, X., Liu, J. M. and Yang, J., “AmphiHex-I: Locomotory performance in amphibious environments with specially designed transformable flipper legs,” IEEE/ASME Trans. Mechatron. 21(3), 17201731 (2016). doi:10.1109/Tmech.2015.2490074.CrossRefGoogle Scholar
Ma, X. M., Wang, G. and Liu, K. X., “Design and optimization of a multimode amphibious robot with propeller-leg,” IEEE Trans. Robot. 38(6), 38073820 (2022). doi:10.1109/Tro.2022.3182880.CrossRefGoogle Scholar
She, Y., Hurd, C. J., Su, H.-J. and Ieee, “A Transformable Wheel Robot with A Passive Leg,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015) pp. 41654170.Google Scholar
Sun, T., Xiang, X., Su, W. H., Wu, H. and Song, Y. M., “A transformable wheel-legged mobile robot: Design, analysis and experiment,” Robot. Auton. Syst. 98, 3041 (2017). doi:10.1016/j.robot.2017.09.008.CrossRefGoogle Scholar

Ge et al. supplementary material

Ge et al. supplementary material

Download Ge et al. supplementary material(Video)
Video 93.6 MB