Skip to main content

Algorithmics and the Limits of Complexity

  • Daniel Parrochia (a1)
The Argument

Dagognet's work shows that making algorithmic compressions seems to be one of the major targets of scientific progress. This effort has been so successful that until recently one might have thought everything could be algorithmically compressed. Indeed, this statement, which might be seen as a scientific translation of the Hegelian thesis in its strong form (“the real is rational and the rational is real”), admits to some objective limits in computer science. Though a lot of algorithms are successful, there exist today, and perhaps forever, logical and physical limits that cannot allow us to cherish the dream of a “theory of everything.” Moreover, a complete mastery of complexity does not seem possible — because some domains of reality are too complicated to be computable, because the human brain is too limited, because computers cannot do that much better than the human brain, and because, ultimately, there are some kinds of things it would make no sense to compress. This paper shows that Dagognet's work came to recognize what a glance at the history of algorithmics has made evident.

Hide All
Aho A. V., Hopcroft J. E., and Ullman J. D.. 1983. Data structures and Algorithms Reading, Mass; Addison-wesley.
Barrow J. D. 1991. Theories of Everything. Oxford: Clarendon Press.
Baudrillard J. 1976 L'échange symbolique et la mort. ParisGallimard.
Bennett C. A. 1982. “The Thermodyamics of Computation — A Review”. International Journal of Theoretical Physics 21 (12) (December): 905–40.
Benvéniste A., Métivier M., and Priouret P.. 1990. Adaptative Algorithms and Stochastic Approximations. Berlin: Springer Verlag.
Boehm Barry W., and Corrado Giuseppe Jacopini. 1966. “Flow Diagrams, Turing Machines and Languaes with only Two Formation Rules.” Communication of the the ACM 9: 366–71.
Bürckert H. J., Herold A., and schmidt-schauss M.. 1990. “On Equational Theories.Unification and (Un) decidability.” In Unification, ed. Kirchner C.. London: Academic Press.
Camus A. 1968. Le mythe de Sisyphe. ParisFolio.
Chaitin G. 1986. “Information Theoretic Computational Complexity.” In New Directions in the philosophy of Mathematics, ed. Tymocszko T., pp. 289–99. Birkhaüser: Boston Inc.
Cherbonneau B., et al. 1975a. Programmation Structurée, rapport n0 112. Toulouse: Université Paul Sabatier (UER d'Informatique).
Cherbonneau B. 1975b. Développement d'un projet en programmation structurée, rapport n0 113. Toulouse: Université Paul Sabatier (UER d'Informatique).
Dagognet F. 1969. Tableaux et langages de la chimie. Paris: Seuil.
Dagognet F. 1970. Le Catalogue de la vie Paris: Galien.
Dagognet F. 1975. Mémoire pourl l'avenir. Vers une méthodologie del'informatique. ParisVrin.
Dagognet F. 1984. Le Nombre et le Lieu. Paris: Vrin.
Dagognet F. 1990. Nature. Paris: Vrin.
Dantzig G. B. 1990. “Origins of Simplex Method.” In A History of Scientific Computing, ed. Nash S.. Reading, Mass.: Addison-wesley.
Derevitskii D. P., Fradkov A. L. 1974. “Two Models for Analyzing the Dynamics of Adaptation Algorithms.” Automation and Remote Control 35 (1): 5967.
Dijkstra Edsger W. 1972 “Notes on Structured Programming.” in Structured Programming, ed. Dahl O. J., Dijkstra E. W., and Hoare C. A. R, pp. 181. London: Academic Press.
Dijkstra Edsger W. 1976. A Discipline of Programming. Englewood Cliffs, N.J.; Prentice-Hall.
Dijkstra Edsger W., and Maurice V. Wikes. 1968. “GOTO Statement Considered Harmful.” Communication of the ACM (Association for Computing Machinery) 11 (3) (March): 147158.
Edmonds J. 1965. “Paths, Trees, and Flowers.” Canadian Journal of Mathematics 17: 449–67.
Einstein A. 1969. La Relativité, trans. Payot.
Fredkin E., and Toffoli T. 1982. “Conservative Logic.” International Journal of Theoretical Physics 21 (3–4) (04): 219–53.
Gondran M., and Minoux M. 1979. Graphes et algorithmes. Paris: Eyrolles.
Hoare C. A. R. 1969. “An Axiomatic Basis for Computer Programming.” Communication of the ACM 12 (10) (10, 03): 576–82.
Khas'minskii R. Z. 1966. “On Stochastic Processes Defined by Differential Equations with a Smaller Parameter.” Theory of Probability and Its Applications 11 (2): 211–28.
Knuth D. E. 1968. The Art of Computer Programming, vol.3, Soring and searching. Reading, Mass: Addison-Wesley.
Kushner H. J., Huang H. 1979. “Rates of convergence for Stochastic Approximation Type of Algorithms.” SIAM Journal Control and Opt. 17 (1): 607–17.
Landauer R. 1985. “Fundamental Physical Limitations of the Computational Process.” Annals of the New York Academy of Science 426: 161–70.
Laurière J.-L. 1986. Intelligence artificielle, résolution de problèmes par l'homme et la machine, vol. 1. Paris: Eyrolles.
McCarthy J., et al. 1962. LISP 1.5 Programmer' Manual. Cambridge, Mass.: M.I.T. Press.
Meyer B., and Baudouin C. 1980. Méthodes de programmation. Paris: Eyrolles.
Parrochia D. 1991. Mathématiques et existence. Seyssel: Champ Vallon.
Parrochia D. 1994. Cosmologie de l'information. Press: Hermès.
Pfeifer R., Schreter Z., and Steels L. 1989. Connectionism in Perspective. Amsterdam: North Holland.
Poundstone W. 1987. The Recursive Universe. Oxford: University Press.
Pratt Terence W. 1976. A New Approach to Software Desigh, Implementation and Documentation.
Robbins H. and Monro S. 1951. “A Stochastic Approximation Method.” Ann Math Stat. 22: 400407.
Siekmann Jörg H. 1990. “Unification Theorey.” In Unification, ed. Kirchner C.. London: Academic Press.
Siklossy L. 1976. Let' Talk LISP. Englewood Cliffs, N.J.: Prentice Hall.
Stockmeyer M. 1973. “Word Problem Requiring Exponential Time,” 5th ACM SIGACT.
Wilkes Maurice V. 1968. “The Outer and Inner Syntax of a Programming Language.” The Computer Journal (March).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Science in Context
  • ISSN: 0269-8897
  • EISSN: 1474-0664
  • URL: /core/journals/science-in-context
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 107 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th January 2018. This data will be updated every 24 hours.