Skip to main content

Situating the Debate on “Geometrical Algebra” within the Framework of Premodern Algebra

  • Michalis Sialaros (a1) and Jean Christianidis (a2)

The aim of this paper is to employ the newly contextualized historiographical category of “premodern algebra” in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on “geometrical algebra.” Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called “semi-algebraic” alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing “premodern algebra,” and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.

Hide All
Al-Muhaqqiq, Mahdi. 2001. “The Classification of the Sciences.” In Science and Technology in Islam: The Exact and Natural Sciences, edited by al-Hassan, Ahmad Y., 111131. Paris: UNESCO Publishing.
Artmann, Benno. 1991. “Euclid's Elements and Its Prehistory.” In ΠΕΡΙ ΤΩΝ ΜΑΘΗΜΑΤΩΝ (Peri tōn Mathēmatōn), Apeiron XXIV (4), edited by Mueller, Ian, 147. Edmonton: Academic Press.
Bakar, Osman 1998. Classification of Knowledge in Islam: A Study in Islamic Philosophies of Science. Cambridge: Islamic Texts Society.
Berggren, Len J. 1984. “History of Greek Mathematics: A Survey of Recent Research.” Historia Mathematica 11:394410.
Bernard, Alain. 2003. “Ancient Rhetoric and Greek Mathematics: A Response to a Modern Historiographical Dilemma.” Science in Context 16:391412.
Besthorn, Rasmus O., and Heiberg, Johan L.. 1893–1932. Codex Leidensis 399.1, Euclidis Elementa ex interpretatione Al-Hadschdschadschii cum Commentariis Al-Narizii. Copenhagen: Hauniae.
Blåsjö, Viktor. 2014. “A Critique of the Modern Consensus in the Historiography of Mathematics.” Journal of Humanistic Mathematics 4:113123.
Christianidis, Jean, and Oaks, Jeffrey A.. 2013. “Practicing Algebra in Late Antiquity: The Problem-Solving of Diophantus of Alexandria.” Historia Mathematica 40:127163.
Christianidis, Jean, and Skoura, Ioanna. 2013. “Solving Problems by Algebra in Late Antiquity: New Evidence from an Unpublished Fragment of Theon's Commentary on the Almagest.” Sciamvs 14:4157.
Corry, Leo. 2013. “Geometry and Arithmetic in the Medieval Traditions of Euclid's Elements: A View from Book II.” Archive for History of Exact Sciences 67:637705.
Crowe, Michael J. 1992. “Afterword: A Revolution in the Historiography of Mathematics?” In Revolutions in Mathematics, edited by Gillies, Donald, 306316. Oxford: Clarendon Press.
Dijksterhuis, Eduard J. 1938. Archimedes. Groningen: Noordhoff.
Freudenthal, Hans. 1977. “What Is Algebra and What Has It Been in History.” Archive for the History of Exact Sciences 16:189200.
Fried, Michael N. 2014The Discipline of History and the ‘Modern Consensus in the Historiography of Mathematics’.” Journal of Humanistic Mathematics 4:124136.
Fried, Michael N., and Unguru, Sabetai. 2001. Apollonius of Perga's Conica: Text, Context, Subtext. Leiden: Brill.
Friedlein, Gottfried, ed. 1873. Proclus: Commentarii in Primum Euclidis Elementorum Librum. Leipzig: Teubner.
Fowler, David H. 1980. “Book II of Euclid's Elements and a Pre-Eudoxean Theory of Ratio.” Archive for History of Exact Sciences 22:536.
Fowler, David H. 1982. “Book II of Euclid's Elements and a pre-Eudoxean Theory of Ratio. Part 2: Sides and Diameters.” Archive for History of Exact Sciences 26:193209.
Fowler, David H. 1994. “Could the Greeks Have Used Mathematical Induction? Did They Use It?Physis 31:252265.
Grattan-Guinness, Ivor. 1996. “Numbers, Magnitudes, Ratios, and Proportions in Euclid's Elements: How Did He Handle Them?” Historia Mathematica 23:355375.
Heath, Thomas L. [1908]1956. The Thirteen Books of Euclid's Elements. New York: Dover.
Heath, Thomas L. 1921. A History of Greek Mathematics. Oxford: Clarendon Press.
Heiberg, Johan L., and Menge, Heinrich, eds. 1883–1916. Euclidis Opera Omnia. Leipzig: Teubner.
Heiberg, Johan L., and Stamatis, Evangelos S., eds. 1969–1977. Euclidis Elementa. Leipzig: Teubner.
Hultsch, Friedrich O., ed. 1876–8. Pappi Alexandrini Collectionis quae supersunt. Berlin: Weidmann.
Klein, Jacob. 1968. Greek Mathematical Thought and the Origin of Algebra. Translated by Eva Brann. Cambridge, Mass.: The M.I.T. Press. First published in German as “Die griechische Logistik und die Entstehung der Algebra” in Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abt. B: Studien, vol. 3, fasc. 1 (1934), 18–105 (Part I); fasc. 2 (1936), 122–235 (Part II).
Lo Bello, Anthony, ed. 2003. The Commentary of al-Nayrizi on Book I of Euclid's Elements of Geometry. Boston: Brill.
Lo Bello, Anthony, ed. 2009. The Commentary of al-Nayrizi on Books II-IV of Euclid's Elements of Geometry. Boston: Brill.
Mahoney, Michael S. 1970. “Babylonian Algebra: Form vs. Content.” Studies in History and Philosophy of Science 1:369380.
Mahoney, Michael S. 1971–2. “Die Anfänge der algebraischen Denkweise im 17. Jahrhundert.RETE 1:1531.
Μegremi, Athanasia, and Christianidis, Jean. 2015. “Theory of Ratios in Nicomachus’ Arithmetica and Series of Arithmetical Problems in Pachymeres’ Quadrivium: Reflections about a Possible Relationship.” In “Les séries de problèmes, un genre au carrefour des cultures,” edited by Alain Bernard. SHS Web of Conferences 22. – Open access conference proceedings in Human and Social Sciences. Les Ulis: EDP Sciences.
Mueller, Ian. 1981. Philosophy of Mathematics and Deductive Structure in Euclid's Elements. Cambridge: MIT Press.
Neugebauer, Otto E. 1957. The Exact Sciences in Antiquity, second edition. Providence: Brown University Press.
Oaks, Jeffrey A. 2007. “Medieval Arabic Algebra as an Artificial Language.” Journal of Indian Philosophy 35:543575.
Oaks, Jeffrey A. 2009. “Polynomials and Equations in Arabic Algebra.” Archive for History of Exact Sciences 63:169203.
Oaks, Jeffrey A. 2010a. “Equations and Equating in Arabic Mathematics.” Archives Internationales d'Histoire des Sciences 60:265298.
Oaks, Jeffrey A. 2010b. “Polynomials and Equations in Medieval Italian Algebra.” Bollettino di Storia delle Scienze Matematiche 30:2360.
Oaks, Jeffrey A. 2014. “The Series of Problems in al-Khwārizmī’s Algebra.” Neusis 22:149167. Translated into Greek by Jean Christianidis.
Oaks, Jeffrey A. 2015. “Series of problems in Arabic Algebra: The Example of ʿAlī al-Sulamī.” In “Les séries de problèmes, un genre au carrefour des cultures,” edited by Alain Bernard. SHS Web of Conferences 22. – Open access conference proceedings in Human and Social Sciences. Les Ulis: EDP Sciences.
Oaks, Jeffrey A., and Alkhateeb, Haitham M.. 2005. “Māl, Enunciations, and the Prehistory of Arabic Algebra.” Historia Mathematica 32:400425.
Oaks, Jeffrey A., and Alkhateeb, Haitham M.. 2007. “Simplifying Equations in Arabic Algebra.” Historia Mathematica 34:4561.
Rashed, Roshdi. 2009. Al-Khwārizmī: The Beginnings of Algebra. London: Saqi Books.
Rider, Robin E. 1982. A Bibliography of Early Modern Algebra, 1500–1800. Berkeley: The Regents of the University of California. (Berkeley Papers in History of Science VII.)
Rosen, Frederic. 1831. The Algebra of Mohammed Ben Musa. London: J. L. Cox.
Saito, Ken. [1985]2004. “Book II of Euclid's Elements in the Light of the Theory of Conic Sections.” In Classics in the History of Greek Mathematics, edited by Jean Christianidis, 139–168. Boston: Kluwer. Originally published in Historia Scientiarum 28:3160.
Saito, Ken. 1986. “Compounded Ratio in Euclid and Apollonius.” Historia Scientiarum 30:2559.
Saito, Ken, and Sidoli, Nathan. 2012. “Diagrams and Arguments in Ancient Greek Mathematics: Lessons Drawn from Comparisons of the Manuscript Diagrams with those in Modern Critical Editions.” In the History of Mathematical Proof in Ancient Traditions, edited by Chemla, Karine, 135162. Cambridge: Cambridge University Press.
Szabó, Árpad. 1978. The Beginnings of Greek Mathematics. Translated by A. M. Ungar. Dordrecht/Boston: Reidel. Originally published in German as Anfänge der griechischen Mathematik. Budapest: Akadémiai Kiadó, 1969.
Tannery, Jules. 1903. Notions de mathématiques, suivies de notices historiques par Paul Tannery. Paris: Delagrave.
Tannery, Paul, ed. 1893–5. Diophanti Alexandrini Opera Omnia, 2 vols. Leipzig: Teubner.
Tannery, Paul. 1912. “De la solution géométrique des problèmes du second degré avant Euclide.” In Mémoires Scientifiques I: Sciences Exactes dans l'antiquité, edited by Heiberg, Johan L. and Zeuthen, Hieronymus G., 254280. Toulouse: Édouard Privat & Paris: Gauthier-Villars.
Unguru, Sabetai. 1975. “On the Need to Rewrite the History of Greek Mathematics.” Archive for History of Exact Sciences 15:67114.
Unguru, Sabetai. 1979. “History of Ancient Mathematics: Some Reflections on the State of the Art.” Isis 70:555565.
Unguru, Sabetai. 1991. “Greek Mathematics and Mathematical Induction.” Physis 28:273289.
Unguru, Sabetai. 1994. “Fowling after Induction.” Physis 31:267272.
Unguru, Sabetai, and Rowe, David E.. 1981. “Does the Quadratic Equation Have Greek Roots? A Study of ‘Geometric Algebra,’ ‘Application of Areas,’ and Related Problems (Part I).” Libertas Mathematica (ARA) 1:149.
Unguru, Sabetai, and Rowe, David E.. 1982. “Does the Quadratic Equation Have Greek Roots? A Study of ‘Geometric Algebra,’ ‘Application of Areas,” and Related Problems (Part II).” Libertas Mathematica (ARA) 2:162.
Van der Waerden, Bartel L. 1930–1. Moderne Algebra. Berlin: Verlag von Julius Springer.
Van der Waerden, Bartel L. 1961. Science Awakening. Translated by Arnold Dresden. New York: Oxford University Press. Originally published in Dutch as Ontwakende Wetenschap: Egyptische, Babylonische en Griekse Wiskunde. Groningen: P. Noordhoff, 1950.
Van der Waerden, Bartel L. 1975. “Defence of a Shocking Point of View.” Archive for History of Exact Sciences 15:199210.
Vitrac, Bernard. 1990–2001. Euclid: Les Éléments, 4 vols. Paris: Presses Universitaires de France.
Vitrac, Bernard. 2012. “The Euclidean Ideal of Proof in the Elements and Philological Uncertainties of Heiberg's Edition of the Text.” In The History of Mathematical Proof in Ancient Traditions, edited by Chemla, Karine, 69134. Cambridge: Cambridge University Press.
Weil, André. 1978. “Who Betrayed Euclid?Archive for History of Exact Sciences 19:9193.
Zeuthen, Hieronymus G. 1886. Die Lehre von den Kegelschnitten im Altertum. Copenhagen: Höst & Sohn.
Zeuthen, Hieronymus G. 1902. Histoire des mathématiques dans l'antiquité et le moyen âge. Translated by Jean Mascart. Paris: Gauthier-Villars. Originally published in Danish as Forelaesning over Mathematikens Histoire: Oldtig i Middlalder. Copenhagen: Verlag A. F. Hoest, 1893.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Science in Context
  • ISSN: 0269-8897
  • EISSN: 1474-0664
  • URL: /core/journals/science-in-context
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 341 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th March 2018. This data will be updated every 24 hours.