Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T05:14:14.865Z Has data issue: false hasContentIssue false

Turbulence Research in the 1920s and 1930s between Mathematics, Physics, and Engineering

Published online by Cambridge University Press:  05 September 2018

Michael Eckert*
Affiliation:
Deutsches Museum, Munich, Germanym.eckert@deutsches-museum.de

Argument

During the interwar period research on turbulence met with interest from different areas: in aeronautical engineering turbulence became a subject of experimental study in wind tunnels; in naval architecture and hydraulic engineering turbulence research was on the agenda because of its role for skin friction; applied mathematicians and theoretical physicists struggled with the problem to determine the onset of turbulence from the fundamental hydrodynamic equations; experimental physicists developed techniques to measure the velocity fluctuations of turbulent flows. In this paper I describe the rise of turbulence in the 1920s and 1930s as a research field under the label of applied mechanics. Although the focus is on Germany, the international development of this research field is illuminated by the role which Ludwig Prandtl played as its acknowledged “chief” (G. I. Taylor). I argue that the multifaceted character of this research field calls for an epistemology and historiography which intrinsically takes the interaction of science and engineering into account.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, John David. 2000. “The Evolution of Aerodynamics in the Twentieth-Century: Engineering or Science?” In Atmospheric Flight in the Twentieth Century, edited by Galison, Peter and Roland, Alex, 241256. Dordrecht: Kluwer.Google Scholar
Battimelli, Giovanni. 1984. “The Mathematician and the Engineer: Statistical Theories of Turbulence in the 20’s.” Rivista di Storia della Scienza 1:7394.Google Scholar
Battimelli, Giovanni. 1986. “On the History of the Statistical Theories of Turbulence.” Revista Mexicana di Fisica (Supplemento) 32, S1:S3S48.Google Scholar
Battimelli, Giovanni. 1988. “The Early International Congresses of Applied Mechanics.” In IUTAM. A Short History, edited by Juhasz, Stephen, 913. Berlin: Springer.Google Scholar
Battimelli, Giovanni. 1992. “I Congressi Internazionali di Meccanica Applicata.” In Le Comunità Scientifiche: tra storia e sociologia della scienza, edited by Gagliasso, Elena and Battimelli, Giovanni, 269-284. Roma: Università degli studi La Sapienza.Google Scholar
Battimelli, Giovanni. 1996. “Senza alcun vincolo ufficiale: Tullio Levi-Civita e i Congressi Internazionali di Meccanica Applicata.” Rivista di Storia della Scienza, II Ser. 4:5180.Google Scholar
Blasius, Heinrich. 1908. “Turbulente Strömungen: Hydrodynamisches Seminar Wintersemester 1907/08. Protokollbuch Nr. 27. Archiv der Universität Göttingen.” Online available at http://www.uni-math.gwdg.de/aufzeichnungen/klein-scans/klein/V27-1907-1909/V27-1907-1909.html (last accessed January 15. 2018).Google Scholar
Bloor, David. 2011. The Enigma of the Aerofoil: Rival Theories in Aerodynamics, 1909-1930. Chicago: Chicago University Press.Google Scholar
Bodenschatz, Eberhard, and Eckert, Michael. 2011. “Prandtl and the Göttingen School.” In A Voyage through Turbulence, edited by Davidson, Peter A., Kaneda, Yukio, Moffatt, Keith, and Sreenivasan, Katepalli R., 40100. Cambridge: Cambridge University Press.Google Scholar
Darrigol, Olivier. 2002. “Turbulence in Nineteenth-Century Hydrodynamics.” Historical Studies in the Physical Sciences 32:207262.Google Scholar
Darrigol, Olivier. 2005. Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford: Oxford University Press.Google Scholar
Darrigol, Olivier. 2008. “Empirical Challenges and Concept Formation in the History of Hydrodynamics.” Centaurus 50:214232.Google Scholar
Davidson, Peter A., Kaneda, Yukio, Moffatt, Keith, and Sreenivasan, Katepalli R., eds. 2011. A Voyage through Turbulence. Cambridge: Cambridge University Press.Google Scholar
Dryden, Hugh L., Schubauer, Galen B., Mock, William C. Jr., and Skramstad, Harold K.. 1936. “Measurements of Intensity and Scale of Wind Tunnel Turbulence and their Relation to the Critical Reynolds Number of Spheres.” NACA-Report No. 581. Online available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930091656.pdf. Last accessed June 8, 2018.Google Scholar
Dryden, Hugh L. 1938. “Turbulence Investigations at the National Bureau of Standards.” Proceedings of the Fifth International Congress on Applied Mechanics, edited by Hartog, Jacob Pieter Den and Peters, Heinrich, 362368. New York: John Wiley.Google Scholar
Dryden, Hugh L. 1947. “The International Congress for Applied Mechanics: Paris, September 22–29, 1946.” Science 105:167169.Google Scholar
Eckert, Michael. 2006. The Dawn of Fluid Dynamics: A Discipline between Science and Engineering. Berlin/Weinheim: Wiley-VCH.Google Scholar
Eckert, Michael. 2008a. “Turbulenz – ein problemhistorischer Abriss.” N. T. M. 16:3971.Google Scholar
Eckert, Michael. 2008b. “Theory from Wind Tunnels: Empirical Roots of Twentieth Century Fluid Dynamics.” Centaurus 50:233253.Google Scholar
Eckert, Michael. 2010. “The Troublesome Birth of Hydrodynamic Stability Theory: Sommerfeld and the Turbulence Problem.” European Physical Journal History 35 (1):2951.Google Scholar
Eckert, Michael. 2012. “Turbulence before Marseille 1961,” Journal of Turbulence 13 (44):125.Google Scholar
Eckert, Michael. 2013. Arnold Sommerfeld – Atomphysiker und Kulturbote 1868–1951: Eine Biografie. Göttingen: Wallstein. Translated by Tom Artin [Arnold Sommerfeld: Science, Life and Turbulent Times 1868-1951]. New York: Springer.Google Scholar
Eckert, Michael. 2017. Ludwig Prandtl – Strömungsforscher und Wissenschaftsmanager: Ein unverstellter Blick auf sein Leben. Berlin, Heidelberg: Springer.Google Scholar
Eisner, Franz. 1932. “Reibungswiderstand.” Werft-Reederei-Hafen 13:207209.Google Scholar
Fage, Arthur, and Townend, Hubert C. H.. 1932. “An Examination of Turbulent Flow with an UltramicroscopeProceedings of the Royal Society London A 135:656677.Google Scholar
Farge, Marie, Moffatt, Henry Keith, and Schneider, Kai, eds. 2014. Turbulence Colloquium Marseille 2011: Fundamental Problems of Turbulence – 50 Years after the Turbulence Colloquium Marseille 1961. Les Ulis: EDP Sciences.Google Scholar
Feynman, Richard P., Leighton, Robert B., and Sands, Matthew. 1964. The Feynman Lectures on Physics. Reading MA: Addison-Wesley.Google Scholar
Föppl, August. 1898. Vorlesungen über technische Mechanik: Einführung in die Mechanik, Band 1. Leipzig: Teubner.Google Scholar
Forchheimer, Philipp. 1905. “Hydraulik.” Enzyklopädie der mathematischen Wissenschaften 4 (3):324472.Google Scholar
Gericke, Helmuth. 1972. 50 Jahre GAMM. Berlin: Springer.Google Scholar
Görtler, Henry. 1948. “Turbulenz.” In Naturforschung und Medizin in Deutschland 1939–1946: Für Deutschland bestimmte Ausgabe der FIAT Review of German Science, vol. 5: Angewandte Mathematik, part III: Mathematische Grundlagen der Strömungsmechanik, edited by Walther, Alwin, 75100. Wiesbaden: Dietrichsche Verlagsbuchhandlung.Google Scholar
Heisenberg, Werner. 1924. “Über Stabilität und Turbulenz von Flüssigkeitsströmen.” Annalen der Physik 74:577627.Google Scholar
Hoffmann, Dieter. 1987. “Zur Etablierung der „technischen Physik“ in Deutschland.” In Der Ursprung der modernen Wissenschaften: Studien zur Entstehung wissenschaftlicher Disziplinen, edited by Guntau, Martin; Laitko, Hubert, 140153. Berlin: Akademie-Verlag.Google Scholar
Hopf, Ludwig. 1910. “Turbulenz bei einem Flusse.” Annalen der Physik 32:777808.Google Scholar
Hunsaker, Jerome, and von Kármán, Theodore. 1939. “Report of the Secretaries.” In Proceedings of the Fifth Congress for Applied Mechanics, Cambridge, Massachusetts, September 12–16, 1938, edited by Hartog, Jacob Pieter Den and Peters, Heinrich, XVII-XXII. New York, London: Wiley.Google Scholar
Journal of Turbulence. 2017. “Aims and Scope.” http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tjot20 (last accessed January 15, 2018).Google Scholar
Kármán, Theodore von. 1921. “Über laminare und turbulente Reibung.” Zeitschrift für Angewandte Mathematik und Mechanik 1:233252.Google Scholar
Kármán, Theodore von. 1924. “Über die Oberflächenreibung von Flüssigkeiten.” In Vorträge aus dem Gebiete der Hydro- und Aerodynamik. Innsbruck 1922, edited by von Kármán, Theodore and Levi-Cività, Tullio, 146167. Berlin: Springer.Google Scholar
Kármán, Theodore von. 1925. “Über die Stabilität der Laminarströmung und die Theorie der Turbulenz.” In Proceedings of the International Congress for Applied Mechanics, Delft (Holland), edited by Biezeno, Cornelis Benjamin and Burgers, Johannes Martinus, 97113. Delft: Waltman Jr.Google Scholar
Kármán, Theodore von. 1930. “Mechanische Ähnlichkeit und Turbulenz.” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch–Physikalische Klasse, 5876.Google Scholar
Kármán, Theodore von. 1931. “Mechanische Ähnlichkeit und Turbulenz.” Proceedings of the Third International Congress of Applied Mechanics, Stockholm 24–29 August 1930, edited by Oseen, Carl Wilhelm, and Weibull, Waloddi, 8593. Stockholm: A. B. Sveriges Litografiska Tryckerier.Google Scholar
Kármán, Theodore von. 1934. “Turbulence and Skin Friction.” Journal of the Aeronautical Sciences 1:120.Google Scholar
Kármán, Theodore von. 1967. The Wind and Beyond (with Lee Edson). Boston, Toronto: Little, Brown and Company.Google Scholar
Kempf, Günther, and Ernst Foerster, Hrsg. 1932: Hydromechanische Probleme des Schiffsantriebs. Berlin, Heidelberg: Springer.Google Scholar
Kurzweg, Hermann. 1933. “Neue Untersuchungen über die Entstehung der turbulenten Rohrströmung.” Annalen der Physik 18:193216.Google Scholar
Launder, Brian, and Jackson, Derek. 2011. “Osborne Reynolds: A Turbulent Life.” In A through Turbulence, edited by Davidson, Peter A., Kaneda, Yukio, Moffatt, Keith, Sreenivasan, Katepalli R., 139. Cambridge: Cambridge University Press.Google Scholar
Leonard, Anthony, and Peters, Norbert. 2011. “Theodore von Kármán,” In A Voyage through Turbulence, edited by Davidson, Peter A., Kaneda, Yukio, Moffatt, Keith, and Sreenivasan, Katepalli R., 101126. Cambridge: Cambridge University Press.Google Scholar
Liepmann, Hans Wolfgang. 1979. “The Rise and Fall of Ideas in Turbulence.” American Scientist 67 (2):221228.Google Scholar
Liepmann, Hans Wolfgang; Laufer, John. 1947. “Investigations of Free Turbulent Mixing.” NACA Technical Note No. 1257 (August). Online available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081851.pdf. Last accessed June 8, 2018.Google Scholar
Love, Augustus E.H. 1901. “Hydrodynamik.” Enzyklopädie der mathematischen Wissenschaften 4 (3):48147.Google Scholar
Lumley, John L., and Yaglom, Akiva M.. 2001. “A Century of Turbulence.” Flow, Turbulence and Combustion 66:241286.Google Scholar
Martin, Joseph D., and Janssen, Michel. 2015. “Beyond the Crystal Maze: Twentieth-Century Physics from the Vantage Point of Solid State Physics.” Historical Studies in the Natural Sciences 45 (5):631640.Google Scholar
Nature. 1939. “Applied Mechanics. Proceedings of the Fifth International Congress for Applied Mechanics.” (signed L. M. L.-T.) Nature 144 (October 28):728.Google Scholar
Naumann, Alexander. 1931. “Experimentelle Untersuchungen über die Entstehung der turbulenten Rohrströmung.” Forschung auf dem Gebiete des Ingenieurwesens 2 (3):8598.Google Scholar
Noether, Fritz. 1921. “Das Turbulenzproblem.” Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 1:125138.Google Scholar
Noether, Fritz. 1926. “Zur asymptotischen Behandlung der stationären Lösungen im Turbulenzproblem.” Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 6:232243.Google Scholar
Prandtl, Ludwig. 1925. “Bericht über Untersuchungen zur ausgebildeten Turbulenz.” Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 5:136139.Google Scholar
Prandtl, Ludwig. 1927. “Über die ausgebildete Turbulenz.” In Verhandlungen des II. Internationalen Kongresses für Technische Mechanik 1926, edited by Meissner, Ernst, 6275, Zürich: Füssli.Google Scholar
Prandtl, Ludwig. 1932. “Zur turbulenten Strömung in Rohren und längs Platten.” Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen 4:1829.Google Scholar
Prandtl, Ludwig. 1933. “Neuere Ergebnisse der Turbulenzforschung.” Zeitschrift des Vereins Deutscher Ingenieure 77:105114.Google Scholar
Prandtl, Ludwig. 1938. “Beitrag zum Turbulenzsymposium.” In Proceedings of the Fifth International Congress on Applied Mechanics, Cambridge MA, edited by Hartog, J. P. Den and Peters, H., 340346. New York: Wiley.Google Scholar
Prandtl, Ludwig. [1947]1953. “Turbulenz.” In Naturforschung und Medizin in Deutschland 1939–1946. Für Deutschland bestimmte Ausgabe der FIAT Review of German Science, vol 11: Hydro- und Aerodynamik, edited by Betz, Albert, 5578. Weinheim: Verlag Chemie.Google Scholar
Prandtl, Ludwig. 1948. “Mein Weg zu hydrodynamischen Theorien.” Physikalische Blätter 4:8992.Google Scholar
Prandtl, Ludwig; Reichardt, Hans. 1934. “Einfluss von Wärmeschichtung auf Eigenschaften einer turbulenten Strömung.” Deutsche Forschung 15:110121.Google Scholar
Rott, Nikolaus. 1990. “Note on the History of the Reynolds Number.” Annual Review of Fluid Mechanics 22:111.Google Scholar
Rotta, Julius C. 1990. Die Aerodynamische Versuchsanstalt in Göttingen, ein Werk Ludwig Prandtls: Ihre Geschichte von den Anfängen bis 1925. Göttingen: Vandenhoeck und Ruprecht.Google Scholar
Schiller, Ludwig. 1932. “Strömung in Rohren.” Handbuch der Experimentalphysik IV (4):1207.Google Scholar
Schlichting, Hermann. [1941/42] 1949. Lecture series: “Boundary Layer Theory, Part 2: Turbulent Flows.” NACA, TM No. 1218, 1949. [Translation of “Vortragsreihe,” W.S. 1941/42, Luftfahrtforschungsanstalt Hermann Göring, Braunschweig.] Online available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050040758.pdf. Last accessed June 8, 2018.Google Scholar
Schlichting, Hermann. 1951. Grenzschicht-Theorie. Karlsruhe: Braun.Google Scholar
Schmitt, Francois. 2017. “Turbulence from 1870 to 1920: The Birth of a Noun and of a Concept.” Comptes Rendues Mecanique 345:620626.Google Scholar
Schubauer, Galen B., and Klebanoff, Philip S.. 1946. “Theory and Application of Hot-Wire Instruments in the Investigation of Turbulent Boundary Layers,” NACA Advance Confidential Report 5K27 (March), www.dtic.mil/dtic/tr/fulltext/u2/a801331.pdf. Last accessed January 15, 2018.Google Scholar
Sexl, Theodor. 1927. “Zur Stabilitätsfrage der Poiseuilleschen und Couetteschen Strömung.” Annalen der Physik 83:835848.Google Scholar
Simmons, L.F.G., and Salter, C.. 1934. “Experimental investigation and analysis of the velocity variations in turbulent flow,” Proceedings of the Royal Society London A145:212234.Google Scholar
Simmons, L.F.G., and Salter, C.. 1938. “An Experimental Determination of the Spectrum of Turbulence.” Proceedings of the Royal Society London A165:7389.Google Scholar
Sreenivasan, Katepalli R. 2011. “G.I. Taylor: The Inspiration behind the Cambridge School.” In A Voyage through Turbulence, edited by Davidson, Peter A., Kaneda, Yukio, Moffatt, Keith, Sreenivasan, Katepalli R., 127186. Cambridge: Cambridge University Press.Google Scholar
Taylor, Geoffrey Ingram. 1935. “Statistical Theory of Turbulence, I-IV.” Proceedings of the Royal Society London A151:421444, 444–454, 455–464, 465–478.Google Scholar
Taylor, Geoffrey Ingram. 1936a. “Statistical Theory of Turbulence. V.” Proceedings of the Royal Society London A156:307317.Google Scholar
Taylor, Geoffrey Ingram. 1936b. “Correlation Measurements in a Turbulent Flow through a Pipe.” Proceedings of the Royal Society London A157:537546.Google Scholar
Taylor, Geoffrey Ingram. 1938. “The Spectrum of Turbulence.” Proceedings of the Royal Society London A164:476490.Google Scholar
Tobies, Renate. 1982. “Die Gesellschaft für angewandte Mathematik und Mechanik im Gefüge imperialistischer Wissenschaftsorganisation,” N. T. M. 19:1626.Google Scholar
Vincenti, Walter G. 1990. What Engineers Know and How They Know It: Analytical Studies from Aeronautical History. Baltimore: Johns Hopkins University Press.Google Scholar
Vincenti, Walter G. 1997. “Engineering Theory in the Making: Aerodynamic Calculation ‘Breaks the Sound Barrier’.” Technology and Culture 38:819851.Google Scholar
Vincenti, Walter G. 2000. “Engineering Experiment and Engineering Theory: The Aerodynamics of Wings at Supersonic Speeds, 1946–1948.” In Atmospheric Flight in the Twentieth Century, edited by Galison, Peter and Roland, Alex, 157180. Dordrecht: Kluwer.Google Scholar
Vincenti, Walter G., and Bloor, David. 2003. “Boundaries, Contingencies and Rigor: Thoughts on Mathematics Prompted by a Case Study in Transonic Aerodynamics.” Social Studies of Science 33 (4):469507.Google Scholar
Wien, Wilhelm. 1900. Lehrbuch der Hydrodynamik. Leipzig: Hirzel.Google Scholar
Zeitschrift für Angewandte Mathematick und Mechanik (Zamm). 1921. Nachrichten 1 (5):419423.Google Scholar