Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T16:13:00.591Z Has data issue: false hasContentIssue false

The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination

Published online by Cambridge University Press:  08 December 2010

Mónica Fernández-Aparicio
Affiliation:
Institute for Sustainable Agriculture, CSIC, Apdo. 4084, E-14080Córdoba, Spain Virginia Tech, Department of Plant Pathology, Physiology and Weed Science, Blacksburg, Virginia24061, USA
Koichi Yoneyama
Affiliation:
Weed Science Center, Utsunomiya University, 350 Mine-machi, Utsunomiya321-8505, Japan
Diego Rubiales*
Affiliation:
Institute for Sustainable Agriculture, CSIC, Apdo. 4084, E-14080Córdoba, Spain
*
*Correspondence Fax: +34 957499252 Email: diego.rubiales@ias.csic.es

Abstract

Strigolactones are apocarotenoids regulating shoot branching. They are also known to be exuded by plant roots at very low concentrations, stimulating hyphal branching of arbuscular mycorrhizal fungi and germination of root parasitic weed seeds. We show that strigolactones play a major role in host specificity of Orobanche and Phelipanche (the broomrapes) seed germination. This observation confirms that host-derived germination stimulants are an important component determining the host specificity of these parasitic plants. Weedy broomrape species were less specialized in germination requirements than the non-weedy species except for O. cumana and O. foetida var. broteri. Similar results were obtained with the root exudates. Some species, such as P. aegyptiaca and O. minor, showed a broad spectrum of host specificity in terms of seed germination, which was stimulated by exudates from the majority of species tested, whereas others, such as O. cumana, O. hederae and O. densiflora, were highly specific. Some species, such as O. minor, P. aegyptiaca and P. nana, were responsive to the three strigolactones studied, whereas others were induced by only one of them, or did not respond to them at all. The synthetic strigolactone analogue GR24, generally used as a standard for germination tests, was not effective on some Orobanche and Phelipanche species. Seeds of some species that did not respond to GR24 were induced to germinate in the presence of fabacyl acetate or strigol, confirming the role of strigolactones in host specificity.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalders, A.J.G. and Pieters, R. (1985) In vitro testing with 2,3,5 triphenyl tetrazolium chloride (TTC) of Orobanche crenata seed metabolism. FABIS Newsletter 13, 3537.Google Scholar
Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824827.Google Scholar
Cook, C.E., Whichard, L.P., Wall, M.E., Egley, G.H., Coggon, P., Luhan, P.A. and McPhail, A.T. (1972) Germination stimulants. II. The structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea Lour.). Journal of the American Chemical Society 94, 61986199.CrossRefGoogle Scholar
El-Halmouch, Y., Benharrat, H. and Thalouarn, P. (2006) Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development. Crop Protection 25, 501507.CrossRefGoogle Scholar
Evidente, A., Fernández-Aparicio, M., Andolfi, A., Rubiales, D. and Motta, A. (2007) Trigoxazonane, a monosubstituted trioxazonane by Trigonella foenum-graecum root exudate, inhibiting agent of Orobanche crenata seed germination. Phytochemistry 68, 24872492.CrossRefGoogle Scholar
Evidente, A., Fernández-Aparicio, M., Cimmino, A., Rubiales, D., Andolfi, A. and Motta, A. (2009) Peagol and peagoldione, two new strigolactone like metabolites isolated from pea root exudates. Tetrahedron Letters 50, 69556958.CrossRefGoogle Scholar
Evidente, A., Cimmino, A., Fernández-Aparicio, M., Andolfi, A., Rubiales, D. and Motta, A. (2010) Polyphenols, including the new peapolyphenols A-C, from pea root exudates stimulating Orobanche foetida seed germination. Journal of Agricultural and Food Chemistry 58, 29022907.CrossRefGoogle ScholarPubMed
Fernández-Aparicio, M., Andolfi, A., Evidente, A., Pérez-de-Luque, A. and Rubiales, D. (2008a) Fenugreek root exudates with Orobanche species specific seed germination stimulatory activity. Weed Research 48, 163168.CrossRefGoogle Scholar
Fernández-Aparicio, M., Pérez-de-Luque, A., Prats, E. and Rubiales, D. (2008b) Variability of interactions between barrel medic (Medicago truncatula) genotypes and Orobanche species. Annals of Applied Biology 153, 117126.Google Scholar
Fernández-Aparicio, M., Flores, F. and Rubiales, D. (2009) Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Annals of Botany 103, 423431.CrossRefGoogle ScholarPubMed
Gómez-Roldán, V., Fermas, S., Brewer, P.B., Puech-Pages, V., Dun, E.A., Pillot, J.P., Letisse, F., Matusova, R., Danoun, S., Portais, J.C., Bouwmeester, H., Becard, G., Beveridge, C.A., Rameau, C. and Rochange, S.F. (2008) Strigolactone inhibition of shoot branching. Nature 455, 189194.Google Scholar
Joel, D.M., Hershenhorn, J., Eizenberg, H., Aly, R., Ejeta, G., Rich, R.J., Ransom, J.K., Sauerborn, J. and Rubiales, D. (2007) Biology and management of weedy root parasites. pp. 267349in Janick, J. (Ed.) Horticultural reviews, Vol. 33. Hoboken, USA, John Wiley and Sons.CrossRefGoogle Scholar
Johnson, A.W., Rosebery, G. and Parker, C. (1976) A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Research 16, 223227.CrossRefGoogle Scholar
Kharrat, M., Halila, M.H., Linke, K.H. and Haddar, T. (1992) First report of Orobanche foetida Poiret on faba bean in Tunisia. FABIS Newsletter 30, 4647.Google Scholar
Macías, F.A., García-Díaz, M.D., Pérez-de-Luque, A., Rubiales, D. and Galindo, J.C.G. (2009) New chemical clues for broomrape-sunflower host-parasite interactions: synthesis of guaianestrigolactones. Journal of Agricultural and Food Chemistry 57, 58535864.Google Scholar
Mangnus, E.M., Stommen, P.L.A. and Zwanenburg, B. (1992) A standardized bioassay for evaluation of potential germination stimulants for seeds of parasitic weeds. Journal of Plant Growth Regulation 11, 9198.Google Scholar
Parker, C. (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Management Science 65, 453459.Google Scholar
Pujadas-Salvá, A.J. (1997) Orobanche ballotae A. Pujadas (Orobanchaceae) especie nueva. Acta Botánica Malacitana 22, 2934.CrossRefGoogle Scholar
Pujadas-Salvá, A.J. and Velasco, L. (2000) Comparative studies on Orobanche cernua L. and O. cumana Wallr. (Orobanchaceae) in the Iberian Peninsula. Botanical Journal of the Linnean Society 134, 513527.CrossRefGoogle Scholar
Pujadas-Salvá, A.J., Fraga, I., Aguinbau, P., Sánchez-gullón, E. and Molina-Mahedero, N. (2003) Orobanche crinita Viv. and Orobanche foetida Poir. (Orobanchaceae) in the West Mediterranean area. Bocconea 16, 737744.Google Scholar
Román, B., Satovic, Z., Alfaro, C., Moreno, M.T., Kharrat, M., Pérez-de-Luque, A. and Rubiales, D. (2007) Host differentiation in Orobanche foetida Poir. Flora 202, 201208.Google Scholar
Rubiales, D., Alcántara, C. and Sillero, J.C. (2004) Variation in resistance to crenate broomrape (Orobanche crenata) in species of Cicer. Weed Research 44, 2732.CrossRefGoogle Scholar
Rubiales, D., Sadiki, M. and Román, B. (2005) First report of Orobanche foetida on common vetch (Vicia sativa) in Morocco. Plant Disease 89, 528.Google Scholar
Rubiales, D., Pérez-de-Luque, A., Fernández-Aparicio, M., Sillero, J.C., Román, B., Kharrat, M., Khalil, S., Joel, D.M. and Riches, Ch. (2006) Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147, 187199.CrossRefGoogle Scholar
Schneeweiss, G.M. (2007) Correlated evolution of life history and host range in the nonphotosynthetic parasitic flowering plants Orobanche and Phelipanche (Orobanchaceae). Journal of Evolutionary Biology 20, 471478.CrossRefGoogle ScholarPubMed
Siame, B.A., Weerasuriya, Y., Wood, K., Ejeta, G. and Butler, L. (1993) Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. Journal of Agricultural Food Chemistry 41, 14861491.CrossRefGoogle Scholar
Smith, C.E., Dudley, M.W. and Lynn, D.G. (1990) Vegetative–parasitic transition control and plasticity in Striga development. Plant Physiology 93, 208221.Google Scholar
Thorogood, C.J., Rumsey, F.J. and Hiscock, S.J. (2009) Seed viability determination in parasitic broomrapes (Orobanche and Phelipanche) using fluorescein diacetate staining. Weed Research 49, 461464.Google Scholar
Vaz Patto, M.C., Díaz-Ruiz, R., Satovic, Z., Román, B., Pujadas-Salvá, A.J. and Rubiales, D. (2008) Genetic diversity of Moroccan populations of Orobanche foetida: evolving from parasitizing wild hosts to crop plants. Weed Research 28, 179186.CrossRefGoogle Scholar
Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J. and Yamaguchi, S. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195200.Google Scholar
Whitney, P.J. (1978) Broomrape (Orobanche) seed germination inhibitors from plant roots. Annals of Applied Biology 89, 475478.Google Scholar
Xie, X., Yoneyama, K., Harada, Y., Fusegi, N., Yamada, Y., Ito, S., Yokota, T., Takeuchi, Y. and Yoneyama, K. (2009) Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry 70, 211215.CrossRefGoogle ScholarPubMed
Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., Hayashi, H. and Yoneyama, K. (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytologist 179, 484494.Google Scholar
Yoneyama, K., Xie, X., Yoneyama, K. and Takeuchi, Y. (2009) Strigolactones: structures and biological activities. Pest Management Science 65, 467470.Google Scholar