Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T16:01:00.832Z Has data issue: false hasContentIssue false

Monte Carlo Simulations of the 2+1 Dimensional Fokker-Planck Equation: Spherical Star Clusters Containing Massive, Central Black Holes

Published online by Cambridge University Press:  04 August 2017

Stuart L. Shapiro*
Affiliation:
Cornell University, Center for Radiophysics and Space Research, Space Sciences Building Ithaca, New York 14853

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dynamical behavior of a relaxed star cluster containing a massive, central black hole poses a challenging problem for the theorist and intriguing possibilities for the observer. The historical development of the subject is sketched and the salient features of the physical solution and its observational consequences are summarized.

The full dynamical problem of a relaxed, self-gravitating, large N-body system containing a massive central black hole has all the necessary ingredients to excite the most dispassionate many-body, computational physicist: it is a time-dependent, multidimensional, nonlinear problem which must be solved over widely disparate length and time scales simultaneously. The problem has been tackled at various levels of approximation over the years. A new 2+1 dimensional Monte Carlo simulation code has been developed in appreciable generality to solve the time-dependent Fokker-Planck equation in E-J space for this problem. The code incorporates such features as (1) a particle “cloning and renormalization” scheme to provide a statistically reliable population of test particles in low density regions of phase space and (2) a time-step “adjustment” algorithm to ensure integration on local relaxation timescales without having to follow typical particles on orbital trajectories. However, critical regions in phase space (e.g. disruption “loss-cone” trajectories) can still be followed on orbital timescales. Numerical results obtained with this Monte Carlo scheme for the dynamical structure and evolution of globular star clusters and dense galactic nuclei containing massive black holes are reviewed.

Recent dynamical integrations of the Einstein field equations for spherical, collisionless (Vlasov) systems in General Relativity suggest a possible origin for the supermassive black holes believed to power quasars and active galactic nuclei. This scenario is discussed briefly.

Type
May 31: External Fields and Finite-Star-Size Effects
Copyright
Copyright © Reidel 1985 

References

Ambartsumian, V.A. 1938, Ann. Lenningrad State Univ. No. 22, (Astr. Series, Issue 4) Google Scholar
Bahcall, J.N., Bahcall, N.A. and Weistrop, D. 1975, Ap. J. (Lett.) 16, L159.Google Scholar
Bahcall, J.N. and Ostriker, J.P. 1975, Nature 256, 23.CrossRefGoogle Scholar
Bahcall, J.N. and Wolf, R.A. (BW) 1976, Ap. J. 209, 214.CrossRefGoogle Scholar
Bahcall, J.N. and Wolf, R.A. 1977, Ap. J. 216, 883.Google Scholar
Bahcall, N.A. 1976, Ap. J. (Lett.), 204, L83.Google Scholar
Bahcall, N.A. and Hausman, M.A. 1976, Ap. J. (Lett.) 207, L181.Google Scholar
Bahcall, N.A., Lasker, B.M. and Wamsteker, W. 1977, Ap. J. (Lett.) 213, L105.CrossRefGoogle Scholar
Begelman, M.C. and Rees, M.J. 1978, MNRAS 185, 847.CrossRefGoogle Scholar
Bisnovatyi-Kogan, G.S., Churayev, R.S. and Kolosov, B.I. 1982, Astron. Astrophys. 113, 179.Google Scholar
Chandrasekhar, S. 1942, Principles of Stellar Dynamics (Chicago: University of Chicago Press).Google Scholar
Cohn, H. 1979, Ap. J. 234, 1036.Google Scholar
Cohn, H. 1980, Ap. J. 242, 765.Google Scholar
Cohn, H. and Hut, P. 1983, preprint.Google Scholar
Cohn, H. and Kulsrud, R.M. 1978, Ap. J. 226, 1087.Google Scholar
Colgate, S.A. 1967, Ap. J. 150, 163.CrossRefGoogle Scholar
Djorgovski, S. and King, J.R. 1984, Ap. J. (Lett.) 277, L49.Google Scholar
Dokuchayev, V.I. and Ozernoi, L.M. 1977, JETP 73, 1587.Google Scholar
Duncan, M.J. and Shapiro, S.L. 1982, Ap. J. 253, 921 (Paper IV).CrossRefGoogle Scholar
Duncan, M.J. and Shapiro, S.L. 1983, Ap. J. 268, 565.Google Scholar
Einstein, A. 1939, Ann. Math. 40, 922.CrossRefGoogle Scholar
Fackerell, E.D., Ipser, J.R. and Thorne, K.S. 1969, Comments Astrophys. Space Phys. 1, 134.Google Scholar
Fall, S.M. and Malkam, M.A. 1978, MNRAS 185, 899.CrossRefGoogle Scholar
Farouki, R.T., Shapiro, S.L. and Teukolsky, S.A. 1983, in IEEE Computer 16, 73.Google Scholar
Frank, J. 1978, MNRAS 184, 87.CrossRefGoogle Scholar
Frank, J. and Rees, M.J. 1976, MNRAS 176, 633.Google Scholar
Goodman, J. 1983, preprint.Google Scholar
Grindlay, J.E. 1977 in Highlights of Astronomy Vol. 4, 111.Google Scholar
Grindlay, J.E. 1981, in X-ray Astronomy with the Einstein Satellite ed. Giacconi, R. (Reidel, Dordrecht) p. 79.CrossRefGoogle Scholar
Grindlay, J.E. 1983, Advances in Space Exploration Vol. 2, No. 9, p. 133.Google Scholar
Grindlay, J.E., Hertz, P., Steiner, J.E., Murray, S.S. and Lightman, A.P. 1984, Ap. J. (Lett.) 282, L13.Google Scholar
Gursky, H. and Schwartz, D.A. 1977 in Ann. Rev. Astron. Astrophys. 15, 541.Google Scholar
Heggie, D.C. 1983, preprint.Google Scholar
Hénon, M. 1961, Ann. d'Ap. 24, 369.Google Scholar
Hénon, M. 1975 in Dynamics of Stellar Systems (IAU Symposium No. 69), ed. by Hayli, A. (Reidel, Dordrecht) p. 133.CrossRefGoogle Scholar
Hills, J.G. 1975, Nature 254, 295.Google Scholar
Inagaki, S. and Lynden-Bell, D. 1983, MNRAS 205, 913.Google Scholar
Ipser, J.R. 1969, Ap. J. 158, 17.CrossRefGoogle Scholar
Ipser, J.R. 1978, Ap. J. 222, 976.CrossRefGoogle Scholar
Ipser, J.R. 1980, Ap. J. 238, 1101.Google Scholar
Lightman, A.P. 1976, private communication in Bahcall and Wolf (1976).Google Scholar
Lightman, A.P. 1982, Ap. J. (Lett.) 263, L19.Google Scholar
Lightman, A.P., Press, W.H. and Odenwald, S. 1978, Ap. J. 219, 629.Google Scholar
Lightman, A.P. and Shapiro, S.L. (LS) 1977, Ap. J. 211, 244.Google Scholar
Lightman, A.P. and Shapiro, S.L. 1978, Rev. Mod. Phys. 50, 437.Google Scholar
Lin, D.N.C. and Tremaine, S. 1980, Ap. J. 242, 789.Google Scholar
Lynden-Bell, D. 1967, MNRAS 136, 101.Google Scholar
Lynden-Bell, D. 1969, Nature 223, 690.Google Scholar
Lynden-Bell, D. and Eggleton, P.P. 1980, MNRAS 138, 495.Google Scholar
Marchant, A.B. and Shapiro, S.L. 1979, Ap. J. 234, 317 (Paper II).CrossRefGoogle Scholar
Marchant, A.B. and Shapiro, S.L. 1980, Ap. J. 239, 685 (Paper III).Google Scholar
McMillan, S.L., Lightman, A.P. and Cohn, H. 1981, Ap. J. 251, 436.CrossRefGoogle Scholar
Norman, C. and Silk, J. 1983, Ap. J. 266, 502.Google Scholar
Peebles, P.J.E. 1972a, Gen. Rel. Grav. 3, 63.Google Scholar
Peebles, P.J.E. 1972b, Ap. J. 178, 371.Google Scholar
Rees, M.J. 1977, Ann. N.Y. Acad. Sci. 302, 613.Google Scholar
Rees, M.J. 1978, Phys. Scripta 17, 193.Google Scholar
Rees, M.J. 1984 in Ann. Rev. Astron. Astrophys., in press.Google Scholar
Sanders, R. 1970, Ap. J. 162, 791.Google Scholar
Sargent, W.L.W., Young, P.J., Boksenberg, A., Shortridge, K., Lynds, C.R. and Hartwick, F.D.A. 1978, Ap. J. 221, 731.Google Scholar
Shapiro, S.L. 1977, Ap. J. 217, 281.Google Scholar
Shapiro, S.L. and Lightman, A.P. 1976, Nature 262, 743.Google Scholar
Shapiro, S.L. and Marchant, A.B. 1978, Ap. J. 225, 603 (Paper I).Google Scholar
Shapiro, S.L. and Teukolsky, S.A. 1985 (a, b,c) in preparation.Google Scholar
Silk, J. and Arons, J. 1975, Ap. J. (Lett.) 200, L131.Google Scholar
Spitzer, L. 1940, MNRAS 100, 396.CrossRefGoogle Scholar
Spitzer, L. 1962, Physics of Fully Ionized Gases (Wiley, New York).Google Scholar
Spitzer, L. 1971 in Semaine d'etude sur les noyeaux des galaxies 1970 (Pontificae Academiae Scientarum Scripta Varia No. 34).Google Scholar
Spitzer, L. 1975 in Dynamics of Stellar Systems (IAU Symposium No 69), ed. by Hayli, A. (Reidel, Dordrecht), p. 3.Google Scholar
Spitzer, L. and Hart, M.H. 1971, Ap. J. 164, 399.Google Scholar
Strittmatter, P.A. and Williams, R.E. 1976 in Ann. Rev. Astron. Astrophys. 14, 373.Google Scholar
Truran, J.W. and Cameron, A.G.W. 1972, Ap. and Space Sci. 14, 179.CrossRefGoogle Scholar
Ulrich, M.H., Boksenberg, A., Bromage, G.E., Clavel, J., Elvius, A., Penston, M.V., Perola, G.C., Petteni, M., Snijders, M.A.J., Tanzi, E.G. and Tarenghi, M. 1984, MNRAS 206, 221.Google Scholar
Wielen, R. 1971, Ap. Space Sci. 13, 300.Google Scholar
Wolfe, A.M. and Burbidge, G.R. 1970, Ap. J. 161, 419.Google Scholar
Wyller, A.A. 1970, Ap. J. 160, 443.Google Scholar
Young, P.J., Shields, G.A. and Wheeler, J.C. 1977, Ap. J. 212, 367.Google Scholar
Young, P.J., Westphal, J.A., Kristian, J., Wilson, C.P. and Landauer, F.P. 1978, Ap. J. 221, 721.Google Scholar
Zel'dovich, Ya. B. and Novikov, I.D. 1971, Relativistic Astrophysics, Vol. 1 (University of Chicago, Chicago).Google Scholar
Zel'dovich, Ya. B. and Podurets, M.A. 1965, Astron. Zh 42, 963 [English translation in Sov. Astron. - A.J. 9, 742].Google Scholar