Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T12:41:38.565Z Has data issue: false hasContentIssue false

Biochemical mechanism and inheritance of cross-resistance to acetolactate synthase inhibitors in giant foxtail

Published online by Cambridge University Press:  20 January 2017

David E. Stoltenberg
Affiliation:
Department of Agronomy, University of Wisconsin, Madison, WI 53706
Chris M. Boerboom
Affiliation:
Department of Agronomy, University of Wisconsin, Madison, WI 53706

Abstract

Giant foxtail putatively resistant to acetolactate synthase (ALS) inhibitors has been reported widely in the upper Midwest, typically in fields with a history of ALS inhibitor use in continuous corn or corn–soybean rotation. However, it is not known whether these giant foxtail populations vary in their response to ALS inhibitors. Therefore, our objectives were to confirm and quantify resistance of giant foxtail accessions from Wisconsin, Minnesota, and Illinois to imidazolinone and sulfonylurea herbicides; to determine the mechanism of resistance; and to determine the mechanism of resistance inheritance. Dose–response experiments using three- to four-leaf stage giant foxtail plants in the greenhouse confirmed cross-resistance of the Wisconsin, Minnesota, and Illinois accessions to imazethapyr and nicosulfuron. Based on ED50 values (the effective dose that reduced shoot dry biomass by 50% compared to the nontreated plants), the Wisconsin, Minnesota, and Illinois accessions were 16-, 17-, and 15-fold resistant to imazethapyr, respectively, and 21-, 19-, and 9-fold resistant to nicosulfuron, respectively, compared to susceptible accessions. In contrast, all accessions were susceptible and responded similarly to fluazifop-P. Based on an in vivo ALS assay, the Wisconsin, Minnesota, and Illinois accessions were > 750-, > 320-, and > 670-fold resistant to imazethapyr, respectively, and 1,900-, > 1,900-, and 80-fold resistant to nicosulfuron, respectively, compared to susceptible accessions. To determine the inheritance of resistance traits, hybrid F1 families were generated from crosses between ALS inhibitor–susceptible and -resistant plants from Minnesota. Three distinct plant phenotypes—resistant (R), intermediate (I), and susceptible (S)—were identified in the F2 generation following exposure to imazethapyr. In repeated experiments, these phenotypes segregated in a 1:2:1 (R:I:S) ratio, indicative of a trait associated with a single, nuclear, semidominant allele.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allard, R. W. 1960. Principles of Plant Breeding. New York: J. Wiley. pp. 385399.Google Scholar
Amann, A., Feucht, D., and Wellmann, A. 2000. A new herbicide for grass control in winter wheat, winter rye and triticale. Z. Pflanzenkrank. Pflanzenschutz. 17 (Spec. Iss.): 545553.Google Scholar
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1998. Discovery of a primisulfuron-resistant shattercane (Sorghum bicolor) biotype. Weed Technol. 12:7477.CrossRefGoogle Scholar
Beyer, E. M., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. Pages 117190 In Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. New York: Marcel-Dekker.Google Scholar
Boutsalis, P. and Powles, S. B. 1995. Inheritance and mechanism of resistance to herbicides inhibiting acetolactate synthase in Sonchus oleraceus L. Theor. Appl. Genet. 91:242247.Google Scholar
Box, G. E. and Cox, D. R. 1964. An analysis of transformation. J. R. Stat. Soc. B 26:211252.Google Scholar
Brown, E. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29:263281.Google Scholar
Caretto, S., Giardina, M. C., Macagnano, A., Bray, E., Nicolodi, C., and Mariotti, D. 1999. Biochemical evidence for two forms of acetohydroxyacid synthase in Daucus carota L. cell lines selected for chlorsulfuron resistance. Pestic. Biochem. Physiol. 64:7684.CrossRefGoogle Scholar
Christopher, J. T., Preston, C., and Powles, S. B. 1994. Malathion antagonizes metabolism-based chlorsulfuron resistance in Lolium rigidum . Pestic. Biochem. Physiol. 49:172182.CrossRefGoogle Scholar
Conley, S. P., Binning, L. K., Stoltenberg, D. E., and Boerboom, C. M. 2000. Soybean yield loss in common lambsquarters (Chenopodium album) and giant foxtail (Setaria faberi) communities. Weed Sci. Soc. Am. Abstr. 40:136.Google Scholar
Darmency, H. and Pernes, J. 1985. Use of wild Setaria viridis (L.) Beauv. to improve triazine resistance in cultivated S. italica (L.) by hybridization. Weed Res. 25:175179.Google Scholar
Devine, M. D., Marles, A. S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31:273280.Google Scholar
Draper, N. R. and Smith, H. 1980. An introduction to nonlinear estimation. Pages 458517 In Applied Regression Analysis. New York: J. Wiley.Google Scholar
Fisher, R. A. 1970. Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd. pp. 78113.Google Scholar
Foes, M. J., Vigue, G., Stoller, E. W., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci. 47:2027.Google Scholar
Foes, M. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.Google Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7:519524.Google Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., and Thill, D. C. 1996. Molecular genetics of target-site resistance to acetolactate synthase inhibiting herbicides. Pages 1016 In Brown, T. M., ed. Molecular Genetics and Evolution of Pesticide Resistance. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Heap, I. 2000. International Survey of Herbicide-Resistant Weeds. Herbicide Resistance Action Committee and Weed Science Society of America. Available online at http://www.weedscience.com. Last accessed November 2000.Google Scholar
Heap, I. M. and Knight, R. 1986. The occurrence of herbicide cross resistance in a population of annual ryegrass (Lolium rigidum) resistant to diclofop-methyl. Aust. J. Res. 37:149156.CrossRefGoogle Scholar
Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1994. Inheritance of trifluralin resistance in green foxtail (Setaria viridis). Weed Sci. 42:123127.Google Scholar
Jasieniuk, M. and Maxwell, B. D. 1993. Population genetics and the evolution of herbicide resistance in weeds. Phytoprotection 75 (Suppl.): 2535.Google Scholar
Knake, E. L. 1977. Giant foxtail: the most serious annual grass weed in the midwest. Weeds Today 9:1920.Google Scholar
Lovell, S. T., Wax, L. M., Horak, M. J., and Peterson, D. A. 1996. Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis). Weed Sci. 44:789794.CrossRefGoogle Scholar
Mackenzie, R., Mortimer, A. M., Putwain, P. D., Bryan, I. B., and Hawkes, T. R. 1995. The inheritance of chlorsulfuron resistance in perennial ryegrass: strategic implications for management of resistance. Pages 769774 In Brighton Crop Protection—Weeds. Farnham, Great Britain: British Crop Protection Council.Google Scholar
Mallory-Smith, C., Hendrickson, P., and Mueller-Warrant, G. 1999. Cross-resistance of primisulfuron-resistant Bromus tectorum L. (downy brome) to sulfosulfuron. Weed Sci. 47:256257.Google Scholar
Mallory-Smith, C. A., Thill, D. C., Dial, M. J., Zemetra, R. S. 1990. Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Technol. 4:787790.Google Scholar
Maxwell, B. D. and Mortimer, A. M. 1994. Selection for herbicide resistance. Pages 126 In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers.Google Scholar
Moechnig, M. J., Stoltenberg, D. E., Boerboom, C. M., and Binning, L. K. 2000. Corn (Zea mays) yield loss associated with common lambsquarters (Chenopodium album) and giant foxtail (Setaria faberi). Weed Sci. Soc. Am. Abstr. 40:136137.Google Scholar
Moss, S. R. and Cussans, G. W. 1991. The development of herbicide-resistant populations of Alopecurus myosuroides (blackgrass) in England. Pages 4555 In Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford: Butterworth-Heinemann.Google Scholar
Ohmes, G. A. and Kendig, J. A. 1999. Inheritance of an ALS-cross-resistant common cocklebur (Xanthium strumarium) biotype. Weed Technol. 13:100103.Google Scholar
Pohl, R. W. 1962. Notes on Seteria viridis and S. faberi . Brittonia 14:210213.Google Scholar
Saari, L. L., Cotterman, J. C., Smith, W. F., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42:110118.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83140 In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers.Google Scholar
Santelmann, P. W., Meade, J. A., and Peters, R. A. 1963. Growth and development of yellow foxtail and giant foxtail. Weeds. 11:139142.Google Scholar
Schreiber, M. M. 1965. Effect of date of planting and stage of cutting on seed production of giant foxtail. Weeds 13:6062.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potent inhibitors of acetohydroxy acid synthase. Plant Physiol. 76:545546.Google Scholar
Simpson, D. M., Stoller, E. W., and Wax, L. M. 1995. An in vivo acetolactate synthase assay. Weed Technol. 9:1722.Google Scholar
Singh, B. K., Newhouse, K. E., Stidmann, M. A., and Shaner, D. L. 1989. Acetohydroxyacid synthase-imidazolinone interaction. Br. Crop Prot. Conf. Monogr. Ser. 42:8795.Google Scholar
Sprague, C. L., Stoller, E. W., and Wax, L. M. 1997a. Common cocklebur (Xanthium strumarium) resistance to selected ALS-inhibiting herbicides. Weed Technol. 11:241247.Google Scholar
Sprague, C. L., Stoller, E. W., and Wax, L. M. 1997b. Response of an acetolactate synthase (ALS)-resistant biotype of Amaranthus rudis to selected ALS-inhibiting herbicides. Weed Res. 37:93101.Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997c. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci. 45:192197.Google Scholar
Stoltenberg, D. E. and Wiederholt, R. J. 1995. Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci. 43:527535.Google Scholar
Swanson, E. B., Herrgesell, M. J., Arnoldo, M., Sippell, D. W., and Wong, R.S.C. 1989. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones. Theor. Appl. Genet. 78:525530.Google Scholar
Taylor, J. M. and Coats, G. E. 1996. Identification of sulfometuron-resistant Italian ryegrass (Lolium multiflorum) selections. Weed Technol. 10:943946.Google Scholar
Valverde, B. E., Chaves, L., Gonzalez, J., and Garita, I. 1993. Field-evolved imazapyr resistance in Ixophorus unisetus and Eleusine indica in Costa Rica. Pages 11891194 In Brighton Crop Protection—Weeds. Farnham, Great Britain: British Crop Protection Council.Google Scholar
Volenberg, D., Stoltenberg, D., and Boerboom, C. 2000a. Giant foxtail resistance to ALS inhibitors—a growing problem in Wisconsin and the Midwest. Wisconsin Crop Manager. Available online at http://ipcm.wisc.edu/wcm. Last accessed November 2000.Google Scholar
Volenberg, D. S., Stoltenberg, D. E., and Boerboom, C. M. 2000b. Outcrossing and inheritance of herbicide-resistance traits in giant foxtail. Proc. North Cent. Weed Sci. Soc. 55:61.Google Scholar
Warwick, S. I. 1990. Genetic variation in weeds—with particular reference to Canadian agricultural weeds. Pages 318 In Kawano, S., ed. Biological Approaches and Evolutionary Trends in Plants. London: Academic Press. pp. 318.Google Scholar
Warwick, S. I., Thompson, B. D., and Black, L. D. 1987. Life history and allozyme variation in populations of the weed species Setaria faberi . Can. J. Bot. 65:13961402.Google Scholar
Wright, T. R., Bascomb, N. F., Sturner, S. F., and Penner, D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci. 46:1323.Google Scholar