Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-30T02:09:22.343Z Has data issue: false hasContentIssue false

Characterization of Italian populations of Lolium spp. resistant and susceptible to diclofop by inter simple sequence repeat

Published online by Cambridge University Press:  20 January 2017

Alessandra Bonetti
Affiliation:
Department of Agroenvironmental Science and Technology, University of Bologna, Viale Fanin 44, I-40127 Bologna, Italy
Ilaria Marotti
Affiliation:
Department of Agroenvironmental Science and Technology, University of Bologna, Viale Fanin 44, I-40127 Bologna, Italy
Maurizio Minelli
Affiliation:
Department of Agroenvironmental Science and Technology, University of Bologna, Viale Fanin 44, I-40127 Bologna, Italy
Pietro Catizone
Affiliation:
Department of Agroenvironmental Science and Technology, University of Bologna, Viale Fanin 44, I-40127 Bologna, Italy

Abstract

Three Italian Lolium weed populations, one susceptible and two resistant to diclofop, were characterized by the technique of inter simple sequence repeats (ISSR). The goal of this study was to taxonomically identify these Lolium populations as well as to evaluate evidence for introgression of ISSR fragments from Festuca and the potential role of this introgression in the diclofop response. ISSR analysis confirmed the genomic background of the weed populations to be consistent with that of Lolium. However, the great range of variation in ISSR banding patterns highlighted that the three ryegrass accessions are mixed populations made up of individuals resulting presumably from intrageneric and intergeneric hybridization in the LoliumFestuca complex. Two Festuca genus-discriminating and 20 Festuca species-discriminating ISSR markers were screened among all the three ryegrass populations. The resistant Tuscania population carried the highest percentage of Festuca genome (16.8%) followed by the resistant Roma (13.6%) and susceptible Vetralla (7.6%) populations. On the basis of these data some influence of Festuca genome in diclofop resistance levels of studied ryegrass populations could be hypothesized.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aiken, S. G., Gardiner, S. E., Bassett, H. C. M., Wilson, B. L., and Consaul, L. L. 1998. Implications from SDS-PAGE analyses of seed proteins in the classification of taxa of Festuca and Lolium (Poaceae). Biochem. Syst. Ecol 26:511533.CrossRefGoogle Scholar
Bravin, F., Zanin, G., and Preston, C. 2001a. Diclofop-methyl resistance in populations of Lolium spp. from central of Italy. Weed Res 41:4958.CrossRefGoogle Scholar
Bravin, F., Zanin, G., and Preston, C. 2001b. Resistance to diclofop-methyl in two Lolium spp. populations from Italy: studies on the mechanism of resistance. Weed Res 41:461473.CrossRefGoogle Scholar
Bulinska-Radomska, Z. and Lester, R. N. 1988. Intergeneric relationships of Lolium, Festuca and Vulpia (Poaceae) and their phylogeny. Plant Syst. Evol 159:217227.CrossRefGoogle Scholar
Butkute, B. L. and Konarev, A. V. 1982. Immunochemical studies of Lolium seed proteins in connection with the phylogeny of this genus. Bot. Zh. (Leningr.) 65:14531458.Google Scholar
Charmet, G., Balfourier, F., and Chatard, V. 1996. Taxonomic relationships and interspecific hybridization in the genus Lolium (grasses). Genet. Res. Crop Evol 43:319327.CrossRefGoogle Scholar
Darbyshire, S. J. and Warwick, S. I. 1992. Phylogeny of North America Festuca (Poaceae) and related genera using chloroplast DNA restriction site variation. Can. J. Bot 70:24152429.CrossRefGoogle Scholar
Dinelli, G., Bonetti, A., Lucchese, C., Catizone, P., Bravin, F., and Zanin, G. 2002. Taxonomic evaluation of Italian populations of Lolium spp. resistant and susceptible to diclofop-methyl. Weed Res 42:156165.CrossRefGoogle Scholar
Dinelli, G. and Lucchese, C. 1999. Comparison between capillary and polyacrylamide gel electrophoresis for identification of Lolium species and cultivars. Electrophoresis 20:25242532.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Doebley, J. 1990. Molecular evidence for gene flow among Zea species. Bioscience 40:443448.CrossRefGoogle Scholar
Emoto, T. 1989. Taxonomic studies on Festuca and Lolium based on isozyme variation. Bull Akita Prefect. Coll. Agric 15:75109.Google Scholar
Fang, D. Q. and Roose, M. L. 1997. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet 95:408417.CrossRefGoogle Scholar
Felsenstein, J. 1985. Confidence limits on phylogenesis: an approach using the bootstrap. Evolution 39:783791.CrossRefGoogle Scholar
Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325338.CrossRefGoogle Scholar
Heap, I. 1999. International survey of herbicide-resistant weeds: Lessons and limitations. Pages 769776 in Proceedings of the Brighton Crop Protection Conference—Weeds. Farnham, UK: British Crop Protection Council.Google Scholar
Jauzein, P. H. 1995. Flore des champs cultivés. Paris, France: INRA.Google Scholar
Kloot, P. M. 1983. The genus Lolium in Australia. Aust. J. Bot 31:421435.CrossRefGoogle Scholar
Lagercrantz, U., Ellegren, H., and Andersson, L. 1993. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:11111115.CrossRefGoogle ScholarPubMed
Malik, C. P. and Thomas, P. T. 1967. Cytological relationship and genome structure of some Festuca species. Caryologia 20:139.CrossRefGoogle Scholar
Martinez-Ghersa, M. A., Ghersa, C. M., Vila-Aiub, M. M., Satorre, E. H., and Radosevich, S. R. 1997. Evolution of resistance to diclofop-methyl in ryegrass (Lolium multiflorum): investigation of the role of introgression with related species. Pestic. Sci 51:305308.3.0.CO;2-I>CrossRefGoogle Scholar
Michelmore, R. W., Paran, I., and Kesseli, R. V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregation populations. Proc. Natl. Acad. Sci. USA 88:98289832.CrossRefGoogle Scholar
Moodie, M., Finch, R. P., and Marshall, G. 1997. Analysis of genetic variation in wild mustard (Sinapis arvensis) using molecular markers. Weed Sci 45:102107.CrossRefGoogle Scholar
Nagaoka, T. and Ogihara, Y. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet 94:597602.CrossRefGoogle Scholar
Pasakinskienè, I., Griffiths, C. M., Bettany, A. J. E., Paplauskienè, V., and Humphreys, M. W. 2000. Anchored simple-sequence repeats as primers to generate species-specific DNA markers in Lolium and Festuca grasses. Theor. Appl. Genet 100:384390.CrossRefGoogle Scholar
Ponzetta, A. 1997. Risultati Preliminari sulla Resistenza di Lolium spp. Agli Inibitori dell'Acetilcoenzima A Carbossilasi in Italia (Preliminary results on Lolium spp. resistance to graminicides in Italy). . DAAPV, University of Padova, Padova, Italy. Pp. 3032.Google Scholar
Robinson, W. A., Liston, A., Doescher, P. S., and Svejcar, T. 1997. Using ISSR markers to quantify clonal vs. sexual reproduction in Festuca idahoensis (Poaceae). Am. J. Bot 54:8489.Google Scholar
Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., and Allard, R. W. 1984. Ribosomal spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA 81:80148019.CrossRefGoogle ScholarPubMed
Semikohov, V. F., Kalistratova, O. A., and Are'Feva, L. P. 1981. Variability of protein fractions of seeds and indices of biochemical evolution. Byull Mosk O-Va Ispyt Prir Otd Biol 86:100110.Google Scholar
Stammers, M., Harris, J., Evans, G. M., Hayward, M. D., and Forster, J. W. 1995. Use of random PCR (RAPD) technology to analyze phylogenetic relationships in the Lolium/Festuca complex. Heredity 74:1927.CrossRefGoogle ScholarPubMed
Sweeney, P. M. and Danneberger, T. K. 1994. Random amplified polymorphic DNA in perennial ryegrass: a comparison of bulk samples vs. individuals. HortScience 29:624626.CrossRefGoogle Scholar
Terrel, E. E. 1966. Taxonomic implications of genetics in ryegrass (Lolium). Bot. Rev 32:138164.CrossRefGoogle Scholar
Welsh, J., Honeycutt, R. J., McClelland, M., and Sobral, B. W. S. 1991. Parentage determination in maize hybrids using the arbitrarily primed polymerase chain reaction (AP-PCR). Theor. Appl. Genet 82:473476.CrossRefGoogle ScholarPubMed
Wolfe, A. D. and Liston, A. 1998. Contributions of PCR-based methods to plant systematics and evolutionary biology. Pages 4386 in Soltis, P. S., Soltis, D. E. and Doyle, J. J. eds. Molecular Systematics of Plants: DNA Sequencing. New York: Kluwer.CrossRefGoogle Scholar
Wolfe, A. D., Xiang, Q-Y., and Kephart, S. 1998a. Diploid hybrid speciation in Penstemon (Scrophulariaceae). Proc. Natl. Acad. Sci. USA 95:51125115.CrossRefGoogle ScholarPubMed
Wolfe, A. D., Xiang, Q-Y., and Kephart, S. 1998b. Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter-simple sequence repeat markers. Mol. Ecol 7:11071125.CrossRefGoogle Scholar
Xu, W. W., Sleper, D. A., and Chao, S. 1995. Genome mapping of polyploidy tall fescue (Festuca arundinacea Schreb.) with RFLP markers. Theor. Appl. Genet 91:947955.CrossRefGoogle Scholar
Yaneshita, M., Ohmura, T., Sasakuma, T., and Ogihara, Y. 1993. Phylogenetic relationships of turfgrasses as revealed by restriction fragment analysis of chloroplast DNA. Theor. Appl. Genet 88:685690.Google Scholar
Yap, I. and Nelson, R. J. 1996. WinBoot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discussion Papers Series 14. Manila, Philippines: International Rice Research Institute.Google Scholar
Zwierzykowski, Z. 1996. Interspecific and intergeneric hybrids of the Lolium-Festuca complex obtained in Poland in the years 1964–1994 and maintained in the collection at the Institute of Plant Genetics in Poznan. J. Appl. Genet 37:79100.Google Scholar
Zwierzykowski, Z., Tayyar, R., Brunnell, M., and Lukaszewski, A. J. 1998. Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum . J. Hered 89:324328.CrossRefGoogle Scholar