Skip to main content Accessibility help
×
×
Home

Characterization of multiple herbicide–resistant waterhemp (Amaranthus tuberculatus) populations from Illinois to VLCFA-inhibiting herbicides

  • Seth A. Strom (a1), Lisa C. Gonzini (a2), Charlie Mitsdarfer (a3), Adam S. Davis (a4), Dean E. Riechers (a4) and Aaron G. Hager (a5)...

Abstract

Field experiments were conducted in 2016 and 2017 in Champaign County, IL, to study a waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] population (CHR) resistant to 2,4-D and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-, photosystem II–, acetolactate synthase (ALS)-, and protoporphyrinogen oxidase–inhibiting herbicides. Two field experiments were designed to investigate the efficacy of very-long-chain fatty-acid (VLCFA)-inhibiting herbicides, including a comparison of active ingredients at labeled use rates and a rate titration experiment. Amaranthus tuberculatus density and control were evaluated at 28 and 42 d after treatment (DAT). Nonencapsulated acetochlor, alachlor, and pyroxasulfone provided the greatest PRE control of CHR (56% to 75%) at 28 DAT, while metolachlor, S-metolachlor, dimethenamid-P, and encapsulated acetochlor provided less than 27% control. In the rate titration study, nonencapsulated acetochlor controlled CHR more than equivalent field use rates of S-metolachlor. Subsequent dose–response experiments with acetochlor, S-metolachlor, dimethenamid-P, and pyroxasulfone in the greenhouse included three multiple herbicide–resistant (MHR) A. tuberculatus populations: CHR-M6 (progeny generated from CHR), MCR-NH40 (progeny generated from Mclean County, IL), and ACR (Adams County, IL), in comparison with a sensitive population (WUS). Both CHR-M6 and MCR-NH40 are MHR to atrazine and HPPD, and ALS inhibitors and demonstrated higher survival rates (LD50) to S-metolachlor, acetochlor, dimethenamid-P, or pyroxasulfone than ACR (atrazine resistant but HPPD-inhibitor sensitive) and WUS. Based on biomass reduction (GR50), resistant to sensitive (R:S) ratios between CHR-M6 and WUS were 7.5, 6.1, 5.5, and 2.9 for S-metolachlor, acetochlor, dimethenamid-P, and pyroxasulfone, respectively. Values were greater for MCR-NH40 than CHR-M6, and ACR was the most sensitive to all VLCFA inhibitors tested. Complete control of all populations was achieved at or below a field use rate of acetochlor. In summary, field studies demonstrated CHR is not controlled by several VLCFA-inhibiting herbicides. Greenhouse dose–response experiments corroborated field results and generated R:S ratios (LD50) ranging from 4.5 to 64 for CHR-M6 and MCR-NH40 among the four VLCFA-inhibiting herbicides evaluated.

Copyright

Corresponding author

Author for correspondence: Aaron G. Hager, Email: hager@illinois.edu

References

Hide All
Bach, L, Faure, JD (2010) Role of very-long-chain fatty acids in plant development, when chain length does matter. Comptes Rendus Biologies 333:361370
Bell, MS, Hager, AG, Tranel, PJ (2013) Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460468
Bell, MS, Tranel, PJ (2010) Time requirement from pollination to seed maturity in waterhemp (Amaranthus tuberculatus). Weed Sci 58:167173
Belz, RG, Duke, SO (2014) Herbicides and plant hormesis. Pest Manag Sci 70:698707
Böger, P (2003) Mode of action for chloroacetamides and functionally related compounds. J Pestic Sci 28:324329
Breaux, EJ (1987) Initial metabolism of acetochlor in tolerant and susceptible seedlings. Weed Sci 35:463468
Brunton, DJ, Boutsalis, P, Gurjeet, G, Preston, C (2018) Resistance to multiple PRE herbicides inn a field-evolved rigid ryegrass (Lolium rigidum) population. Weed Sci 66:581585
Buhler, DD, Hartzler, RG (2001) Emergence and persistence of seed of velvetleaf, common waterhemp, woolly cupgrass, and giant foxtail. Weed Sci 49:230235
Burnet, WM, Barr, AR, Powles, SB (1994) Chloroacetamide resistance in rigid ryegrass (Lolium rigidum). Weed Sci 42:153157
Busi, R, Gaines, TA, Powles, SB (2017) Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum . Pest Manag Sci 73:410417
Busi, R, Powles, SB (2016) Cross-resistance to prosulfocarb + S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum . Pest Manag Sci 72:16641672
Deal, LM, Hess, FD (1980) An analysis of the growth inhibitory characteristics of alachlor and metolachlor. Weed Sci 28:168175
Dhillon, NS, Anderson, JL (1972) Morphological, anatomical, and biochemical effects of propachlor on seedling growth. Weed Res 12:182189
Edwards, R, Owen, WJ (1989) The comparative metabolism of S-triazine herbicides atrazine and terbutryne in suspension cultures of potato and wheat. Pestic Biochem Physiol 34:246254
Evans, CM (2016) Characterization of a Novel Five-Way-Resistant Population of Waterhemp (Amaranthus tuberculatus). Master’s thesis. Urbana, IL: University of Illinois. 106 p
Evans, JA, Tranel, PJ, Hager, AG, Schutte, B, Wu, C, Chatham, LA, and Davis, AS (2016) Managing the evolution of herbicide resistance. Pest Manag Sci 72:7480
Fuerst, EP (1987) Understanding the mode of action of chloroacetamides and thiocarbamate herbicides. Weed Technol 1:270277
Hager, AG, Wax, LM, Bollero, GA, Simmons, FW (2002a) Common waterhemp (Amaranthus rudis Sauer) management with soil-applied herbicides in soybean (Glycine max (L.) Merr.). Crop Prot 21:277283.
Hager, AG, Wax, LM, Simmons, FW, Stoller, EW (1997) Waterhemp management in agronomic crops. University of Illinois Bulletin 855:12
Hager, AG, Wax, LM, Stoller, EW, Bollero, GA (2002b) Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci 50:607610
Hamm, PC (1974) Discovery, development, and current status of the chloroacetamide herbicides. Weed Sci 22:541545
Hartzler, RG, Buhler, DD, Stoltenberg, DE (1999) Emergence characteristics of four annual weed species. Weed Sci 47:578584
Hatton, PJ, Dixon, D, Cole, DJ, Edwards, R (1996) Glutathione transferase activities and herbicide selectivity in maize an associated weed species. Pestic Sci 46:267275
Hausman, NE, Singh, S, Tranel, PJ, Riechers, DE, Kaundun, SS, Polge, ND, Thomas, DA, Hager, AG (2011) Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manag Sci 67:258261
Hausman, NE, Tranel, PJ, Riechers, DE, Hager, AG (2016) Response of a waterhemp (Amaranthus tuberculatus) population resistant to HPPD-inhibiting herbicides to foliar-applied herbicides. Weed Technol 30:106115
Hausman, NE, Tranel, PJ, Riechers, DE, Maxwell, DJ, Gonzini, LC, Hager, AG (2013) Responses of an HPPD inhibitor-resistant waterhemp (Amaranthus tuberculatus) population to soil-residual herbicides. Weed Technol 27:704711
Heap, I (2018) The international survey of herbicide resistant weeds. www.weedscience.org. Accessed: December 1, 2018
Jhala, A (2017) Effect of excessive rainfall on efficacy of residual herbicides applied in corn and Soybean. https://cropwatch.unl.edu. Accessed: October 11, 2018
Johnson, WG, Chahal, GS, Regehr, DL (2012) Efficacy of various corn herbicides applied preplant incorporated and preemergence. Weed Technol 26:220229
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840848
Loux, MM, Doohan, D, Dobbels, AF, Reeb, B, Johnson, WG, Young, BG, Ikley, J, Hager, A (2018) Weed Control Guide for Ohio, Indiana, and Illinois. Columbus: Ohio State University Extension Pub# WS16/Bulletin 789/IL15. 220 p
Ma, R, Kaundun, SS, Tranel, PJ, Riggins, CW, McGinness, DL, Hager, AG, Hawkes, TH, McIndoe, E, Riechers, DE (2013) Distinct detoxification mechanisms confer resistance to atrazine in a population of waterhemp. Plant Physiol 163:363377
Murray, MJ (1940) The genetics of sex determination in the family Amaranthaceae . Genetics 25:409431
Nakatani, M, Yoshihiro, Y, Honda, H, Uchida, Y (2016) Development of the novel pre-emergence herbicide pyroxasulfone. J Pestic Sci 41:107112
Oliveira, MC, Jhala, AJ, Gaines, T, Irmak, S, Amundsen, K, Scott, JE, Knezevic, SZ (2017) Confirmation and control of HPPD-inhibiting herbicide-resistant waterhemp (Amaranthus tuberculatus) in Nebraska. Weed Technol 31:6779
Patzoldt, WL, Tranel, PJ, Hager, AG (2005) A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci 53:3036
Pillai, P, Davis, DE, Truelove, B (1979) Effects of metolachlor on germination, growth, leucine uptake, and protein synthesis. Weed Sci 27:634637
Riechers, DE, Kreuz, K, Zhang, Q (2010) Detoxification without intoxication: herbicide safeners activate plant defense gene expression. Plant Physiol 153:313
Sauer, J (1955) Revision of the dioecious amaranths. Madrono 13:546
Saxton, AM (1998) A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 1243–1246 in Proceedings of the 23rd SAS Users Group International. Cary, NC: SAS Institute
Shaner, DL, ed (2014) Herbicide Handbook. 10th ed. Lawrence, KS:Weed Science Society of America. 512 p
Shergill, LS, Barlow, BR, Bish, MD, Bradley, KW (2018) Investigations of 2, 4-D and multiple herbicide resistance in a Missouri waterhemp (Amaranthus tuberculatus) population. Weed Sci 66: 386394
Somerville, GJ, Powles, SB, Walsh, MJ, Renton, M (2017) Why was resistance to shorter-acting pre-emergence herbicides slower to evolve? Pest Manag Sci 73:844851
Steckel, LE (2007) The dioecious Amaranthus spp.: here to stay. Weed Technol 21:567570
Steckel, LE, Sprague, CL (2004) Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci 52:359364
Steckel, LE, Sprague, CL, Hager, AG (2002) Common waterhemp (Amaranthus rudis) control in corn (Zea mays) with single preemergence and sequential applications of residual herbicides. Weed Technol 16:755761
Steckel, LE, Sprague, CL, Hager, AG, Simmons, FW, Bollero, GA (2003) Effects of shading on common waterhemp (Amaranthus rudis) growth and development. Weed Sci 51:898903
Tanetani, Y, Fujioka, T, Kaku, K, Shimizu, T (2011) Studies on the inhibition of plant very-long-chain fatty acid elongase by a novel herbicide pyroxasulfone. J Pestic Sci 36:221228
Tanetani, Y, Kaku, K, Kawai, K, Fujioka, T, Shimizu, T (2009) Action of mechanism of a novel herbicide, pyroxasulfone. Pestic Biochem Physiol 95:4755
Tranel, PJ, Riggins, CW, Bell, MS, Hager, AG (2011) Herbicide resistance in Amaranthus tuberculatus: a call for new options. J Agric Food Chem 59:58085812
Trenkamp, S, Martin, W, Tietjen, K (2004) Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc Natl Acad Sci USA 101:1190311908
Werck-Reichhart, D, Hehn, A, Didierjean, L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116123
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed