Skip to main content

Comparative Analysis of 2,4-D Uptake, Translocation, and Metabolism in Non–AAD-1 Transformed and 2,4-D–Resistant Corn

  • Joshua J. Skelton (a1), David M. Simpson (a2), Mark A. Peterson (a2) and Dean E. Riechers (a1)

The Enlist™ traits provide 2,4-D resistance in several crops. Though corn is naturally tolerant to 2,4-D, the engineered trait conferred by the aryloxyalkanoate dioxygenase-1 (AAD-1) enzyme provides enhanced 2,4-D tolerance and confers resistance to the graminicide herbicide family, the aryloxyphenoxypropionates. The objectives of this research were 2-fold: (1) measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist™ (E, +AAD1) and non–AAD-1 transformed (NT, −AAD1) isogenic corn hybrids; and (2) and investigate the effect of glyphosate and/or the Enlist™ adjuvant system (ADJ) on these factors and corn injury. Uptake of radiolabeled 2,4-D acid applied alone in corn was not altered by the addition of ADJ when tank mixed at 24 h after application (HAA). By contrast, uptake of radiolabeled 2,4-D was significantly lower (69%) compared with 2,4-D plus ADJ (89%) at 24 HAA with a premixed formulation of 2,4-D choline plus glyphosate-dimethylamine (Enlist Duo™ herbicide [EDH]). Translocation of 2,4-D between the two corn hybrids was not different. E corn metabolized more 2,4-D (100% of absorbed) than NT corn (84%), and glyphosate did not alter 2,4-D metabolism. Furthermore, the metabolism of 2,4-D to nonphytotoxic dichlorophenol (DCP) and subsequent DCP-derived metabolites formed in E corn was examined. Injury to E corn is not typically observed in the field; however, injury symptoms were clearly evident in E corn (within 24 HAA) when formulated acetochlor was tank mixed with EDH, which correlated with an increase in 2,4-D uptake during this time period. In summary, the lack of injury in E corn following EDH applied alone may be attributed to a relatively low amount of 2,4-D uptake and the combination of natural and engineered 2,4-D metabolic pathways.

Corresponding author
* Corresponding author’s E-mail:
Hide All

Associate Editor for this paper: Franck E. Dayan, Colorado State University.

Hide All
Chkanikov, DI, Makeyev, AM, Pavlova, NN, Grygoryeva, LV, Dubovoi, VP, Klimov, OV (1976) Variety of 2,4-D metabolic pathways in plants: its significance in developing analytical methods for herbicides residues. Arch Environ Contam Toxicol 5:97103
Devkota, P, Johnson, WG (2016) Effect of carrier water hardness and ammonium sulfate on efficacy of 2,4-D choline and premixed 2,4-D choline plus glyphosate. Weed Technol 30:878887
Ditmarsen, SC, Simpson, DM, Ellis, JM, Ruen, DC, Ferguson, SM, Carranza, NN, Gallup, CA, Hopkins, BW (2010) Crop tolerance and yield of Dow AgroSciences herbicide trait technology in corn. Page 49 in Proceedings of the 2010 North Central Weed Science Society Volume 65. Lexington, KY: North Central Weed Science Society
Fang, SC, Butts, JS (1954) Studies in plant metabolism. III. Absorption, translocation and metabolism of radioactive 2,4-D in corn and wheat plants. Plant Physiol 29:5660
Feung, CS, Hamilton, RH, Mumma, RO (1975) Metabolism of 2,4-dichlorophenoxyacetic acid. VII. Comparison of metabolites from five species of plant callus tissue cultures. J Agric Food Chem 23:373376
Grossmann, K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113120
Hamburg, A, Puvanesarajah, V, Burnett, TJ, Barnekow, DE, Premkumar, ND, Smith, GA (2001) Comparative degradation of [14C]-2,4-dichlorophenoxyacetic acid in wheat and potato after foliar application and in wheat, radish, lettuce, and apple after soil application. J Agric Food Chem 49:146155
Hatzios, K (2005) Metabolism and elimination of toxicants. Pages 469519 in Hock B & Elstner E eds, Plant Toxicology. 4th edn. New York: Marcel Dekker
Hauser, EW (1955) Absorption of 2,4-dichlorophenoxyacetic acid by soybean and corn plants. Agron J 47:3236
Kniss, AR, Vassios, JD, Nissen, SJ, Ritz, C (2011) Nonlinear regression analysis of herbicide absorption studies. Weed Sci 59:601610
Kreuz, K, Fonne-Pfister, R (1992) Herbicide-insecticide interaction in maize: malathion inhibits cytochrome P450-dependent primisulfuron metabolism. Pestic Biochem Physiol 43:232240
Laurent, F, Canlet, C, Debrauwer, L, Pascal-Lorber, S (2007) Metabolic fate of [14C]-2,4-dichlorophenol in tobacco cell suspension cultures. Environ Toxicol Chem 26:22992307
Laurent, F, Debrauwer, L, Pascal-Lorber, S (2006) Metabolism of [14C]-2,4-dichlorophenol in edible plants. Pest Manag Sci 62:558564
Ma, R, Kaundun, SS, Tranel, PJ, Riggins, CW, McGinness, DL, Hager, AG, Hawkes, T, McIndoe, E, Riechers, DE (2013) Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiol 163:363377
Ma, R, Skelton, JJ, Riechers, DE (2015) Measuring rates of herbicide metabolism in dicot weeds with an excised leaf assay. J Vis Exp 103:e53236
Montgomery, ML, Chang, YL, Freed, VH (1971) Comparative metabolism of 2,4-D by bean and corn plants. J Agric Food Chem 19:12191221
Mueller, TC, Barnett, KA, Brosnan, JT, Steckel, LE (2011) Glyphosate-resistant goosegrass (Eleusine indica) confirmed in Tennessee. Weed Sci 59:562566
Pascal-Lorber, S, Rathahao, E, Cravedi, JP, Laurent, F (2003) Uptake and metabolic fate of [14C]-2,4-dichlorophenol and [14C]-2,4-dichloroaniline in wheat (Triticum aestivum) and soybean (Glycine max). J Agric Food Chem 51:47124718
Perez-Jones, A, Park, KW, Colquhoun, J, Mallory-Smith, C, Shaner, D (2005) Identification of glyphosate-resistant Italian ryegrass (Lolium multiflorum) in Oregon. Weed Sci 53:775779
Peterson, MA, McMaster, SA, Riechers, DE, Skelton, J, Stahlman, PW (2016) 2,4-D past, present, and future: a review. Weed Technol 30:303345
R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. . Accessed March 11, 2014
Ritz, C, Kniss, AR, Streibig, JC (2015) Research methods in weed science: statistics. Weed Sci 63(SP1): 166187
Ritz, C, Streibig, JC (2012) Dose Response Curves and Other Nonlinear Curves in Weed Science and Ecotoxicology with the Add-On Package drc in R. Accessed: January 12, 2015
Roberts, TR (1998) Aryloxyalkanoic acids. Pages 59102 in Hutson DH, Lee PW, Nicholls PH & Plimmer JR eds, Metabolic Pathways of Agrochemicals. Part 1: Herbicides and Plant Growth Regulators. Cambridge, UK: Royal Society of Chemistry
Robertson, MR, Kirkwood, RC (1970) The mode of action of foliage-applied translocated herbicides with particular reference to the phenoxy-acid compounds. II. The mechanism and factors influencing translocation, metabolism, and biochemical inhibition. Weed Res 10:94120
Robinson, AP, Simpson, DM, Johnson, WG (2015) Response of aryloxyalkanoate dioxygenase-12 transformed soybean yield components to postemergence 2,4-D. Weed Sci 63:242247
Ruen, DC, Scherder, EF, Ditmarsen, SC, Prasifka, PL, Ellis, JM, Simpson, DM, Gallup, CA, Hopkins, BW (2017) Tolerance of corn with glyphosate resistance and the aryloxyalkanoate dioxygenase trait (AAD-1) to 2,4-D choline and glyphosate. Weed Technol 31:217224
Sargent, JA, Blackman, GE (1972) Studies on foliar penetration IX. Patterns of penetration of 2,4-dichlorophenoxyacetic acid into the leaves of different species. J Exp Biol 23:830841
Schroder, P, Collins, C (2002) Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. Intl J Phytoremed 4:247265
Siminszky, B (2006) Plant cytochrome P450-mediated herbicide metabolism. Phytochem Rev 5:445458
Skelton, JJ, Simpson, DM, Peterson, MA, Riechers, DE (2014a) 2,4-D uptake and translocation in Enlist™ crops. Page 28 in Proceedings of the 69th Annual Meeting of the North Central Weed Science Society. Minneapolis, MN: North Central Weed Science Society
Skelton, JJ, Simpson, DM, Peterson, MA, Riechers, DE (2014b) 2,4-D metabolism in Enlist™ crops. Page 62 in Proceedings of the 69th Annual Meeting of the North Central Weed Science Society. Minneapolis, MN: North Central Weed Science Society
Skelton, JJ, Simpson, DM, Riechers, DE (2013) Uptake, translocation, and metabolism of 2,4-D in Enlist™ soybeans. Pages 74–75 in Proceedings of the 68th Annual Meeting of the North Central Weed Science Society. Columbus, OH: North Central Weed Science Society
Van Eerd, LL, Hoagland, RE, Zablotowicz, RM, Hall, JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472495
Vila-Aiub, MM, Balbi, MC, Gundel, PE, Ghersa, CM, Powles, SB (2007) Evolution of glyphosate-resistant johnsongrass (Sorghum halepense) in glyphosate-resistant soybean. Weed Sci 55:566571
Wang, CJ, Liu, ZQ (2007) Foliar uptake of pesticides—present and future challenge. Pestic Biochem Physiol 87:18
Wright, TR, Shan, G, Walsh, TA, Lira, JM, Cui, C, Song, P, Zhuang, M, Arnold, NL, Lin, G, Yau, K, Russell, SM, Cicchillo, RM, Peterson, MA, Simpson, DM, Zhou, N, Ponsamuel, J, Zhang, Z (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxy-alkanoate dioxygenase transgenes. Proc Natl Acad Sci USA 107:2024020245
Zhou, X, Rotondaro, SL, Ma, M, Rosser, SW, Olberding, EL, Wendelburg, BM, Adelfinskaya, YA, Balcer, JL, Blewett, TC, Clements, B (2016) Metabolism and residues of 2,4-dichlorophenoxy-acetic acid in DAS-40278-9 maize (Zea mays) transformed with aryloxyalkanoate dioxygenase-1 gene. J Agric Food Chem 64:74387444
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed