Skip to main content Accessibility help
×
×
Home

Competitiveness of Herbicide-Resistant Waterhemp (Amaranthus tuberculatus) with Soybean

  • Thomas R. Butts (a1), Bruno C. Vieira (a2), Débora O. Latorre (a3), Rodrigo Werle (a4) and Greg R. Kruger (a5)...
Abstract

Waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] is a troublesome weed occurring in cropping systems throughout the U.S. Midwest with an ability to rapidly evolve herbicide resistance that could be associated with competitive disadvantages. Little research has investigated the competitiveness of different A. tuberculatus populations under similar environmental conditions. The objectives of this study were to evaluate: (1) the interspecific competitiveness of three herbicide-resistant A. tuberculatus populations (2,4-D and atrazine resistant [2A-R], glyphosate and protoporphyrinogen oxidase [PPO]-inhibitor resistant [GP-R], and 2,4-D, atrazine, glyphosate, and PPO-inhibitor susceptible [2AGP-S]) with soybean [Glycine max (L.) Merr.]; and (2) the density-dependent response of each A. tuberculatus population within a constant soybean population in a greenhouse environment. Amaranthus tuberculatus competitiveness with soybean was evaluated across five target weed densities of 0, 2, 4, 8, and 16 plants pot−1 (equivalent to 0, 20, 40, 80, and 160 plants m−2) with 3 soybean plants pot−1 (equivalent to 300,000 plants ha−1). At the R1 soybean harvest time, no difference in soybean biomass was observed across A. tuberculatus populations. At A. tuberculatus densities <8 plants pot−1, the 2AGP-S population had the greatest biomass and stem diameter per plant. At the R7 harvest time, the 2AGP-S population caused the greatest loss in soybean biomass and number of pods compared with the other populations at densities of <16 plants pot−1. The 2AGP-S population had greater early-season biomass accumulation and stem diameter compared with the other A. tuberculatus populations, which resulted in greater late-season reduction in soybean biomass and number of pods. This research indicates there may be evidence of interspecific competitive fitness cost associated with the evolution of 2,4-D, atrazine, glyphosate, and PPO-inhibitor resistance in A. tuberculatus. Focus should be placed on effectively using cultural weed management practices to enhance crop competitiveness, especially early in the season, to increase suppression of herbicide-resistant A. tuberculatus.

Copyright
Corresponding author
Author for correspondence: Thomas R. Butts, University of Nebraska–Lincoln, 402 West State Farm Road, North Platte, NE 69101. (Email: tbutts@huskers.unl.edu)
References
Hide All
Ahrens, WH Stoller, EW (1983) Competition, growth rate, and CO2 fixation in triazine-susceptible and resistant smooth pigweed (Amaranthus hybridus). Weed Sci 31:438444
Archontoulis, SV Miguez, FE (2015) Nonlinear regression models and applications in agricultural research. Agron J 107:786798
Barnes, ER, Jhala, AJ, Knezevic, SZ, Sikkema, PH Lindquist, JL (2018) Common ragweed (Ambrosia artemisiifolia L.) interference with soybean in Nebraska. Agron J 110:646653
Bell, MS, Hager, AG Tranel, PJ (2013) Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460468
Bensch, CN, Horak, MJ Peterson, D (2003) Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743
Bernards, ML, Crespo, RJ, Kruger, GR, Gaussoin, R Tranel, PJ (2012) A waterhemp (Amaranthus tuberculatus) population resistant to 2,4-D. Weed Sci 60:379384
Butts, TR, Norsworthy, JK, Kruger, GR, Sandell, LD, Young, BW, Steckel, LE, Loux, MM, Bradley, KW, Conley, SP, Stoltenberg, DE, Arriaga, FJ Davis, VM (2016) Management of pigweed (Amaranthus spp.) in glufosinate-resistant soybean in the Midwest and Mid-South. Weed Technol 30:355365
Chatham, LA, Bradley, KW, Kruger, GR, Martin, JR, Owen, MDK, Peterson, DE, Mithila, J Tranel, PJ (2015) A multistate study of the association between glyphosate resistance and EPSPS gene amplification in waterhemp (Amaranthus tuberculatus). Weed Sci 63:569577
Cordes, JC, Johnson, WG, Scharf, P Smeda, RJ (2004) Late-emerging common waterhemp (Amaranthus rudis) interference in conventional tillage corn. Weed Technol 18:9991005
Cousens, R (1985) A simple model relating yield loss to weed density. Ann Appl Biol 107:239252
Crespo, RJ, Wingeyer, AB, Kruger, GR, Riggins, CW, Tranel, PJ Bernards, ML (2017) Multiple-herbicide resistance in a 2,4-D-resistant waterhemp (Amaranthus tuberculatus) population from Nebraska. Weed Sci 65:743754
Fehr, WR, Caviness, CE, Burmood, DT Pennington, JS (1971) Stage of development of descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929931
Feltner, KC, Hurst, HR Anderson, LE (1969) Tall waterhemp competition in grain sorghum. Weed Sci 17:214216
Figueiredo, MRA, Leibhart, LJ, Reicher, ZJ, Tranel, PJ, Nissen, SJ, Westra, P, Bernards, ML, Kruger, GR, Gaines, TA Jugulam, M (2018) Metabolism of 2,4-dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (Amaranthus tuberculatus) population. Pest Manag Sci, 10.1002/ps.4811
Giacomini, D, Westra, P Ward, SM (2014) Impact of genetic background in fitness cost studies: an example from glyphosate-resistant Palmer amaranth. Weed Sci 62:2937
Hager, AG, Wax, LM, Stoller, EW Bollero, GA (2002) Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci 50:607610
Heap, I (2018) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com/Summary/home.aspx. Accessed: March 1, 2018
Horak, MJ Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355
Jhala, AJ, Sandell, LD, Rana, N, Kruger, GR Knezevic, SZ (2014) Confirmation and control of triazine and 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide-resistant Palmer amaranth (Amaranthus palmeri) in Nebraska. Weed Technol 28:2838
Jordan, N (1996) Effects of the triazine resistance mutation on fitness in Amaranthus hybridus (smooth pigweed). J Appl Ecol 33:141150
Lorentz, L, Gaines, TA, Nissen, SJ, Westra, P, Strek, HJ, Dehne, HW, Ruiz-Santaella, JP Beffa, R (2014) Characterization of glyphosate resistance in Amaranthus tuberculatus populations. J Agric Food Chem 62:81348142
Nandula, VK, Ray, JD, Ribeiro, DN, Pan, Z Reddy, KN (2013) Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Sci 61:374383
Oliveira, MC, Gaines, TA, Dayan, FE, Patterson, EL, Jhala, AJ Knezevic, SZ (2018a) Reversing resistance to tembotrione in an Amaranthus tuberculatus (var. rudis) population from Nebraska, USA with cytochrome P450 inhibitors. Pest Manag Sci, 10.1002/ps.4697
Oliveira, MC, Pereira, GAM, Ferreira, EA, Santos, JB, Knezevic, SZ Werle, R (2018b) Additive design: the concept and data analysis. Weed Res, 10.1111/wre.12317
Onofri, A, Carbonell, EA, Piepho, H-P, Mortimer, AM Cousens, RD (2010) Current statistical issues in weed research. Weed Res 50:524
Osipitan, OA Dille, JA (2017) Fitness outcomes related to glyphosate resistance in kochia (Kochia scoparia): what life history stage to examine? Front Plant Sci 8:13
Ritz, C, Baty, F, Streibig, JC Gerhard, D (2015) Dose-response analysis using R. PLoS ONE 10:e0146021
Ritz, C Streibig, JC (2016) Analysis of Dose-Response Curves. https://cran.r-project.org/web/packages/drc/drc.pdf. Accessed: January 20, 2018
Sammons, RD Gaines, TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70:13671377
Sarangi, D, Tyre, AJ, Patterson, EL, Gaines, TA, Irmak, S, Knezevic, SZ, Lindquist, JL Jhala, AJ (2017) Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes. Sci Rep 7:srep44913
Sauer, J (1957) Recent migration and evolution of the dioecious Amaranths . Evolution (NY) 11:1131
Sauer, JD (1967) The grain Amaranths and their relatives: a revised taxonomic and geographic survey. Ann Mo Bot Gard 54:103137
Schultz, JL, Chatham, LA, Riggins, CW, Tranel, PJ Bradley, KW (2015) Distribution of herbicide resistances and molecular mechanisms conferring resistance in Missouri waterhemp (Amaranthus rudis Sauer) populations. Weed Sci 63:336345
Shergill, LS, Barlow, BR, Bish, MD Bradley, KW (2018) Investigations of 2,4-D and multiple herbicide resistance in a Missouri waterhemp (Amaranthus tuberculatus) population. Weed Sci 66:386394
Shinozaki, K Kira, T (1956) Intraspecific competition among higher plants VII. Logistic theory of the C-D effect. J Inst Polytech Osaka City Univ D7:3572
Sibony, M Rubin, B (2003) The ecological fitness of ALS-resistant Amaranthus retroflexus and multiple-resistant Amaranthus blitoides . Weed Res 43:4047
Steckel, LE (2007) The dioecious Amaranthus spp.: here to stay. Weed Technol 21:567570
Steckel, LE Sprague, CL (2004aCommon waterhemp (Amaranthus rudis) interference in corn. Weed Sci 52:359364
Steckel, LE Sprague, CL (2004bLate-season common waterhemp (Amaranthus rudis) interference in narrow- and wide-row soybean. Weed Technol 18:947952
Swanton, CJ, Nkoa, R Blackshaw, RE (2015) Experimental methods for crop–weed competition studies. Weed Sci 63:211
Vennapusa AR, Faleco F, Vieira B, Samuelson S, Kruger GR, Werle R, Jugulam M (2018) Prevalence and mechanism of atrazine resistance in waterhemp (Amaranthus tuberculatus) from Nebraska. Weed Sci, 10.1017/wsc.2018.38
Vieira, BC, Samuelson, SL, Alves, GS, Gaines, TA, Werle, R Kruger, GR (2018) Distribution of glyphosate-resistant Amaranthus spp. in Nebraska. Pest Manag Sci, 10.1002/ps.4781
Vila-Aiub, MM, Goh, SS, Gaines, TA, Han, H, Busi, R, Yu, Q Powles, SB (2014) No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri . Planta 239:793801
Vila-Aiub, MM, Gundel, PE Preston, C (2015) Experimental methods for estimation of plant fitness costs associated with herbicide resistance genes. Weed Sci 63:203216
Vila-Aiub, MM, Neve, P Powles, SB (2005) Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACCase target site mutation in a multiple-resistant Lolium rigidum population. New Phytol 167:787796
Vila-Aiub, MM Neve, P Powles, SB (2009) Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol 184:751767
Vila-Aiub, MM, Neve, P Roux, F (2011) A unified approach to the estimation and interpretation of resistance costs in plants. Heredity (Edinb) 107:386394
Weiner, J Freckleton, RP (2010) Constant final yield. Annu Rev Ecol Evol Syst 41:173192
Werle, R, Sandell, LD, Buhler, DD, Hartzler, RG Lindquist, JL (2014) Predicting emergence of 23 summer annual weed species. Weed Sci 62:267279
Willey, RW Heath, SB (1969) The quantitative relationships between plant population and crop yield. Adv Agron 21:281321
Wu, C, Davis, AS Tranel, PJ (2018) Limited fitness costs of herbicide resistance traits in Amaranthus tuberculatus facilitate resistance evolution. Pest Manag Sci 74:293301
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed