Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T03:28:20.966Z Has data issue: false hasContentIssue false

Demography of Corn Poppy (Papaver rhoeas) in Relation to Emergence Time and Crop Competition

Published online by Cambridge University Press:  20 January 2017

Joel Torra*
Affiliation:
Departament d'Hortofructicultura, Botànica i Jardinería, ETSEA. Universitat de Lleida, Rovira Roure 191, 25198 Lleida, Spain
Jordi Recasens
Affiliation:
Departament d'Hortofructicultura, Botànica i Jardinería, ETSEA. Universitat de Lleida, Rovira Roure 191, 25198 Lleida, Spain
*
Corresponding author's E-mail: joel@hbj.udl.es

Abstract

Twenty-day cohorts of corn poppy were grown in the presence or absence of barley, and seedling survival, biomass accumulation and allocation, plant reproduction, and seed dormancy were measured. Seedling survivorship and biomass accumulation differed strongly among cohorts and were influenced by crop competition. In the absence of crop competition, plants from the first three cohorts (emerging October to January) had 900% higher biomass and 160% more seeds per plant than later cohorts (emerging January to April). Crop competition reduced cohort fitness; for example, in 2003 to 2004, corn poppy biomass was reduced 57 to 96%, and seed production 77 to 97%. Seeds collected from plants that had emerged in spring were less dormant, and thus, germination and emergence of these seeds were higher (25% higher and 200 to 600% higher, respectively) than those for seeds collected from other cohorts. Environmental factors at the time of seed formation may be responsible for the observed differences in dormancy. Cohort-dependent emergence, growth, reproduction, and dormancy have relevant implications for corn poppy management and demography in agricultural systems in northeastern Spain. The dormant seeds produced by autumn to winter cohorts will be the main contributors to the seed bank and weed population shift in subsequent generations. For efficient corn poppy management, the control of cohorts emerging before or with the crop in a cereal field is essential.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baskin, C. C. and Baskin, J. M. 1998. Seeds: ecology, biogeography and evolution of dormancy and germination. San Diego Academic.Google Scholar
Baskin, C. C., Milberg, P., Andersson, L., and Baskin, J. M. 2002. Non-deep simple morphophysiological dormancy in seeds of the weedy facultative winter annual Papaver rhoeas . Weed Res. 42:194202.Google Scholar
Bosnic, A. C. and Swanton, J. 1997. Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci. 45:276282.CrossRefGoogle Scholar
Chancellor, R. J. 1986. Decline of arable weed seeds during 20 years in soil under grass and the periodicity of seedling emergence after cultivations. J. Appl. Ecol. 23:631637.CrossRefGoogle Scholar
Cirujeda, A. 2001. Integrated Management of Herbicide Resistant Papaver rhoeas L. Populations. . Lleida, Spain: Universitat de Lleida. 274. p.Google Scholar
Cirujeda, A., Recasens, J., and Taberner, A. 2006. Dormancy cycle and viability of buried seeds of Papaver rhoeas . Weed Res. 46:18.Google Scholar
Cirujeda, A., Recasens, J., Torra, J., and Taberner, A. 2007. A germination study of herbicide-resistant field poppies in Spain. Agron. Sustain. Dev. 28:207220.CrossRefGoogle Scholar
Colbach, N., Dürr, C., Roger-Estrade, J., Chauvel, B., and Caneill, J. 2006. AlomySys: modelling black-grass (Alopecurus myosuroides Huds.) germination and emergence, in interaction with seed characteristics, tillage and soil climate, I: construction. Eur. J. Agron. 24:95112.Google Scholar
Cousens, R. D. 1996. Comparative growth of wheat, barley, and annual ryegrass (Lolium rigidum) in monoculture and mixture. Aust. J. Agric. Res. 47:449464.Google Scholar
Covarelli, G. and Peccetti, G. 1989. Timing of the emergence of the man weed species of central Italy. Inf. Agrario. 45:99103.Google Scholar
Debaeke, P. I. N. R. A. 1988. Dynamique de quelques dicotylédones adventices en culture de céréale, I: relation flore levee–stock semencier. Weed Res. 28:251263.Google Scholar
Donohue, K., Dorn, L., Griffith, C., Kim, E., Aguilera, A., Polisetty, C. R., and Schmitt, J. 2005. Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution. 59:740–57.Google ScholarPubMed
Ennos, A. R. and Fitter, A. H. 1992. Comparative functional morphology of the anchorage systems of annual dicots. Funct. Ecol. 6:7178.Google Scholar
Fernandez-Quintanilla, C., Barroso, J., Recasens, J., Sans, F. X., Toner, C., and Sánchez del Arco, M. J. 2000. Demography of Lolium rigidum in winter barley crops: analysis of recruitment, survivorships and reproduction. Weed Res. 40:281291.Google Scholar
Gonzalez-Andujar, J. L. and Fernandez-Quintanilla, C. 1991. Modelling the population dynamics of Avena sterilis under dry-land cereal cropping systems. J. Appl. Ecol. 28:1627.Google Scholar
Holm, L., Doll, J., Holm, E., Pancho, J., and Herbereger, J. 1997. Papaver rhoeas L. Pages 555561. in. World Weeds Natural Histories and Distribution. New York J. Wiley.Google Scholar
Honěk, A. and Martinková, Z. 2002. Effects of individual plant phenology on dormancy of Rumex obtusifolius seeds at dispersal. Weed Res. 42:148155.Google Scholar
Hubner, R., Fykse, H., Hurle, K., and Klemsdal, S. S. 2003. Morphological differences, molecular characterization, and herbicide sensitivity of catchweed bedstraw (Galium aparine) populations. Weed Sci. 51:214225.Google Scholar
Izquierdo, J. and Recasens, J. 1992. Efecto de la precipitación y de la temperatura en la germinacion y mortalidad de las malas hierbas. Pages 153159. in. Proceedings of the 3rd Spanish Weed Science Congress. Madrid, Spain Spanish Weed Science Society.Google Scholar
Karlsson, L. M. and Milberg, P. 2003. Dormancy and germination of fresh seeds of four Papaver taxa. Asp. Appl. Biol. 69:293298.Google Scholar
Knezevic, S. Z. and Horak, M. J. 1998. Influence of emergence time and density on redroot pigweed (Amaranthus retroflexus). Weed Sci. 46:665672.Google Scholar
Lindström, J. and Kokko, H. 2002. Cohort effects and population dynamics. Ecol. Lett. 5:338344.Google Scholar
Lintell-Smith, G., Baylis, J. M., and Watkinson, A. R. 1992. The effects of reduced nitrogen and weed competition on the yield of winter wheat. Asp. Appl. Biol. 30:367372.Google Scholar
Lutman, P. W., Berry, K. J., and Freeman, S. E. 2008. Seed production and subsequent seed germination of Senecio vulgaris (groundsel) grown alone or in autumn-sown crops. Weed Res. 48:237247.CrossRefGoogle Scholar
Lutman, P. W., Cussans, G. W., Wright, K. J., Wilson, B. J., Wright, G. M., and Lawson, H. M. 2002. The persistence of seeds of 16 weed species over six years in two arable fields. Weed Res. 42:231241.Google Scholar
Luzuriaga, A. L., Escurdero, A., and Perez-Garcia, F. 2006. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Res. 46:163174.Google Scholar
Mahoney, K. J. and Kegode, G. O. 2004. Biennial wormwood (Artemisia biennis) biomass allocation and seed production. Weed Sci. 52:246254.Google Scholar
McCloskey, M., Firbank, L. G., Watkinson, A. R., and Webb, D. J. 1998. Interactions between weeds of winter wheat under different fertilizer, cultivation and weed management treatments. Weed Res. 38:1124.Google Scholar
Mennan, H. and Ngouajio, M. 2006. Seasonal cycles in germination and seedling emergence of summer and winter populations of catchweed bedstraw (Galium aparine) and wild mustard (Brassica kaber). Weed Sci. 54:114120.CrossRefGoogle Scholar
Milberg, P. and Andersson, L. 1994. Effect of emergence date on seed production and seed germinability in Thlaspi arvense . Swed. J. Agric. Res. 24:143146.Google Scholar
Milberg, P. and Andersson, L. 1997. Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species. Can. J. Botany. 75:19982004.Google Scholar
Mulugeta, D. and Stoltenberg, D. E. 1998. Influence of cohorts on Chenopodium album demography. Weed Sci. 46:6570.CrossRefGoogle Scholar
Norris, R. F. 1996. Morphological and phenological variation in barnyardgrass (Echinochloa crus-galli) in California. Weed Sci. 44:804814.Google Scholar
Rapparini, G. 2001. Diserbo di frumento e cereali minori in pre e post-emergenza precoce. Inf. Agrario. 35:5361.Google Scholar
Riba, F., Recasens, J., and Taberner, A. 1990. Flora arvense de los cereales de invierno de Catalunya (I). Pages 239246. in. Proceedings 1990 Sociedad Española de Malherbología. Madrid, Spain Spanish Weed Science Society.Google Scholar
Steadman, K. J., Ellery, A. J., Chapman, R., Moore, A., and Turner, N. C. 2004. Maturation temperature and rainfall influence seed dormancy characteristics of annual ryegrass (Lolium rigidum). Aust. J. Agric. Res. 55:1047–57.Google Scholar
Torra, J. 2007. Biology, Integrated Management and Modelling of Herbicide Resistant Papaver rhoeas populations in Dryland Cereal Fields. . Lleida, Spain Universitat de Lleida. 138 p.Google Scholar
Wall, D. A. 1995. Comparative analysis of three cruciferous weeds: growth, development, and competitiveness. Weed Sci. 43:7580.CrossRefGoogle Scholar
Weibull, W. 1959. A statistical distribution function of wide applicability. J. Appl. Mech. 18:293297.Google Scholar
Wilson, B. J., Peters, N. C. B., Wright, K. J., and Atkins, H. A. 1988. The influence of crop competition on the seed production of Lamium purpureum, Viola arvensis and Papaver rhoeas in winter wheat. Asp. Appl. Biol. 18:7180.Google Scholar
Wilson, B. J., Wright, K. J., Brain, P., Clements, M., and Stephens, E. 1995. Predicting the competitive effects of weed and crop density on weed biomass, weed production and crop yield in wheat. Weed Res. 35:265278.CrossRefGoogle Scholar
Wright, K. J. 1993. Weed seed production as affected by crop density and nitrogen application. Pages 275280. in. Proceedings 1993 Brighton Crop Protection Conference—Weeds. Brighton, UK British Crop Protection Council.Google Scholar
Wright, K. J., Seavers, G. P., and Wilson, B. J. 1997. Competitive effects of multiple weed species on weed biomass and wheat yield. Pages 497502. in. Proceedings 1997 Brighton Crop Protection Conference—Weeds. Brighton, UK British Crop Protection Council.Google Scholar
Zhang, J. and Cavers, P. B. 1994. Effect of herbicide application on fruit characters of Xanthium strumarium L. populations Weed Res. 34:319326.Google Scholar
Zhang, J. and Hamill, A. S. 1996. Responses of Abutilon theophrasti to agricultural management systems. Weed Res. 36:471481.Google Scholar