Skip to main content
×
×
Home

Differential Germination Characteristics of Dicamba-Resistant Kochia (Bassia scoparia) Populations in Response to Temperature

  • Vipan Kumar (a1), Prashant Jha (a2), Charlemagne A. Lim (a3) and Phillip W. Stahlman (a4)
Abstract

Dicamba-resistant (DR) kochia [Bassia scoparia (L.) A. J. Scott] has been reported in six U.S. states and one Canadian province. To develop effective B. scoparia control tactics, it is necessary to understand the seed germination pattern of DR B. scoparia. The objective of this study was to compare the germination characteristics of DR versus dicamba-susceptible (DS) B. scoparia populations from Montana and Kansas under constant (5 to 35 C) and/or alternating temperatures (5/10 to 30/35 C). DR B. scoparia lines from Montana were generated after three generations of recurrent selection of field-collected populations with dicamba. Seeds of DR or DS lines from Kansas were obtained after one generation of restricted self-pollination. DR B. scoparia lines from both Montana and Kansas had a lower maximum cumulative germination than the DS lines across all temperature treatments. A majority of DR B. scoparia lines from Montana showed a temperature-mediated seed germination response, with a higher thermal requirement (30 to 35 C or 25/30 to 30/35 C) to attain the maximum cumulative germination compared with DS lines. Germination rates at 5 to 30 C were lower for DR versus DS B. scoparia lines from Kansas. All DR lines from Montana took more time than DS lines to initiate germination at 5 and 10 C or 5/10 and 20/25 C. Similarly, there was a delayed onset of germination of the DR versus DS line from Kansas at 5, 10, 15, and 20 C. Furthermore, the DR B. scoparia from both Kansas and Montana had a slower germination pattern relative to the DS B. scoparia. Diversified crop rotations using winter wheat (Triticum aestivum L.), fall-sown cover crops, or early-spring planted crops (e.g., wheat or barley [Hordeum vulgare L.]) that are competitive against late-emerging B. scoparia in conjunction with strategic tillage and late-season weed control tactics should be used to facilitate depletion of DR B. scoparia seedbanks.

Copyright
Corresponding author
Author for correspondence: Vipan Kumar, Kansas State University, Agricultural Research Center, Hays, KS 67601. (Email: vkumar@ksu.edu)
References
Hide All
Alcocer-Ruthling, M, Thill, DC Shafii, B (1992) Differential competitiveness of sulfonylurea resistant and susceptible biotypes of prickly lettuce (Lactuca serriola). Weed Technol 6:303309
Baker, DV, Withrow, JR, Brown, CS Beck, KG (2010) Tumbling: use of diffuse knapweed (Centaurea diffusa) to examine an understudied dispersal mechanism. Invasive Plant Sci Manag 3:301309
Beckie, H, Blackshaw, R, Hall, L Johnson, E (2016) Pollen- and seed-mediated gene flow in kochia (Kochia scoparia). Weed Sci 64:624633
Christoffoleti, PJ, Westra, PB Moore, F (1997) Growth analysis of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci 45:691695
Cranston, HJ, Kern, AJ, Hackett, JL, Miller, EK, Maxwell, BD Dyer, WE (2001) Dicamba resistance in kochia. Weed Sci 49:164170
Crespo, RJ, Bernards, ML, Sbatella, GM, Kruger, GR, Lee, DJ Wilson, RJ (2014) Response of Nebraska kochia (Kochia scoparia) accessions to dicamba. Weed Technol 28:151162
Dille, JA, Stahlman, PW, Du, J, Geier, PW, Riffel, JD, Currie, RS, Wilson, RG, Sbatella, GM, Westra, P, Kniss, AR, Moechnig, MJ Cole, RM (2017) Kochia (Kochia scoparia) emergence profiles and seed persistence across the central Great Plains. Weed Sci 65:614625
Dyer, WE, Chee, PW Fay, PK (1993) Rapid germination of sulfonylurea-resistant Kochia scoparia L. accessions is associated with elevated seed levels of branched chain amino acids. Weed Sci 41:1822
Everitt, JH, Alaniz, MA Lee, JB (1983) Seed germination characteristics of Kochia scoparia. J Range Manage 36:646648
Fleet, B Gill, G (2012) Seed dormancy and seedling recruitment in smooth barley (Hordeum murinum ssp. glaucum) populations in southern Australia. Weed Sci 60:394400
Foster MR, Griffin JL (2018) Injury criteria associated with soybean exposure to dicamba. Weed Technol. doi: 10.1017/wet.2018.42
Friesen, LF, Beckie, HJ, Warwick, SI Van Acker, RC (2009) The biology of Canadian weeds. 138. Kochia scoparia (L.) Schrad. Can J Plant Sci 89 : 141167
Goss, GA Dyer, WE (2003) Physiological characterization of auxinic herbicide-resistant biotypes of kochia (Kochia scoparia). Weed Sci 51:839844
Heap, I (2018) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: January 15, 2018
Jami Al-Ahmadi, M Kafi, M (2007) Cardinal temperatures for germination of Kochia scoparia (L.). J Arid Environ 68:308314
Jha, P, Kumar, V Lim, CA (2015) Variable response of kochia [Kochia scoparia (L.) Schrad.] to auxinic herbicides dicamba and fluroxypyr in Montana. Can J Plant Sci 95:965972
Kettler, TA, Lyon, DJ, Doran, JW, Powers, WL Stroup, WW (2000) Soil quality assessment after weed-control tillage in a no-till wheat-fallow cropping system. Soil Sci Soc Am J 64:339346
Kumar, V Jha, P (2015a) Effective preemergence and postemergence herbicide programs for kochia control. Weed Technol 29:2434
Kumar, V Jha, P (2015b) Growth and reproduction of glyphosate-resistant and susceptible populations of Kochia scoparia . PLoS ONE 10:e0142675
Kumar, V Jha, P (2015c) Influence of glyphosate timing on Kochia scoparia demographics in glyphosate-resistant sugar beet. Crop Prot 76:3945
Kumar, V Jha, P (2015d) Influence of herbicides applied postharvest in wheat stubble on control, fecundity, and progeny fitness of Kochia scoparia in the US Great Plains. Crop Prot 71:144149
Kumar, V Jha, P (2016) Differences in germination, growth, and fecundity characteristics of dicamba-fluroxypyr-resistant and susceptible Kochia scoparia . PLoS ONE 11:e0161533
Kumar, V Jha, P (2017) Effect of temperature on germination characteristics of glyphosate-resistant and glyphosate-susceptible kochia (Kochia scoparia). Weed Sci 65:361370
Kumar, V, Jha, P, Dille, JA Stahlman, PW (2018) Emergence dynamics of Kochia (Kochia scoparia) populations from the U.S. Great Plains: a multi-site-year study. Weed Sci 66:2535
Kumar, V, Jha, P Reichard, N (2014) Occurrence and characterization of kochia (Kochia scoparia) accessions with resistance to glyphosate in Montana. Weed Technol 28:122130
Mapplebeck, LR, Souza Machado, V Grodzinski, B (1982) Seed germination and seedling growth characteristics of atrazine susceptible and resistant biotypes of Brassica campestris . Can J Plant Sci 62:733739
Mengistu, LW Messersmith, CG (2002) Genetic diversity of kochia. Weed Sci 50:498503
Neve, P, Norsworthy, JK, Smith, KL Zelaya, IA (2010) Modeling evolution and management of glyphosate resistance in Amaranthus palmeri . Weed Res 51:99112
Owen, MJ, Goggin, DE Powles, SB (2015) Intensive cropping systems select for greater seed dormancy and increased herbicide resistance levels in Lolium rigidum (annual ryegrass). Pest Manag Sci 71:966971
Preston, C, Belles, DS, Westra, PH, Nissen, SJ Ward, SM (2009) Inheritance of resistance to the auxinic herbicide dicamba in Kochia (Kochia scoparia). Weed Sci 57:4347
Ritz, C, Baty, F, Streibig, JC Gerhard, D (2015) Dose-response analysis using R. PLoS ONE 10:e0146021.
Ritz, C Streibig, JC (2005) Bioassay analysis using R. J Stat Softw 12:122
Ritz C, Spiess AN (2008) qpcR: An R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics 24:1549–1551
Romo, JT Kaferkamp, MR (1987) Forage Kochia scoparia germination response to temperature, water stress, and specific ions. Agron J 79:2730
Sbatella, GM Wilson, RG (2010) Isoxaflutole shifts kochia (Kochia scoparia L.) populations in continuous corn. Weed Technol 24:392396
Schwinghamer, TD Van Acker, RC (2008) Emergence timing and persistence of kochia (Kochia scoparia). Weed Sci 56:3741
Stallings, GP, Thill, DC, Mallory-Smith, CA Shafii, B (1995) Pollen-mediated gene flow of sulfonylurea-resistant kochia (Kochia scoparia). Weed Sci 43:95102
Thompson, CR, Thill, DC Shafii, B (1994) Germination characteristics of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci 42:5056
Varanasi, VK, Godar, AS, Currie, RS, Dille, AJ, Thompson, CR, Stahlman, PW Jugulam, M (2015) Field evolved resistance to four modes of action of herbicides in a single kochia (Kochia scoparia L. Schrad.) population. Pest Manag Sci 71:12071212
Vila-Aiub, MM, Gundel, PE Preston, C (2015) Experimental methods for estimation of plant fitness costs associated with herbicide-resistance genes. Weed Sci 63:203216
Vila-Aiub, MM, Neve, P Powles, SB (2009) Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol 184:751767
Vink JP, Soltani N, Robinson DE, Tardif FJ, Lawton MB, Sikkema PH (2012) Glyphosate-resistant giant ragweed (Ambrosia trifida) control in dicamba-tolerant soybean. Weed Technol 26:422–428
Westra, EP (2016) Glyphosate-Resistant Kochia (Kochia scoparia) Management in the Central Great Plains and Western Canada. Ph.D dissertation. Fort Collins, CO: Colorado State University. 112 p
Young, JA, Evans, RA, Stevens, R Everett, RL (1981) Germination of Kochia prostrata seed. Agron J 73:957961
Zorner, PS, Zimdahl, RL Schweizer, EE (1984) Effect of depth and duration of seed burial on kochia (Kochia scoparia). Weed Sci 32:602607
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed