Hostname: page-component-68c7f8b79f-7wx25 Total loading time: 0 Render date: 2025-12-19T16:35:20.036Z Has data issue: true hasContentIssue true

Evapotranspiration of Palmer amaranth (Amaranthus palmeri) in maize, soybean, and fallow under subsurface drip and center-pivot irrigation systems

Published online by Cambridge University Press:  17 November 2023

Jasmine Mausbach
Affiliation:
Graduate Research Assistant, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
Suat Irmak*
Affiliation:
Professor and Department Head, Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, USA
Meetpal S. Kukal
Affiliation:
Assistant Research Professor, Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, USA
Kelsey Karnik
Affiliation:
Biomedical Data Scientist, Department of Biostatistics, University of Kentucky, Lexington, KY, USA
Debalin Sarangi
Affiliation:
Assistant Professor, Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN, USA
Amit J. Jhala
Affiliation:
Associate Professor, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA
*
Corresponding author: Suat Irmak; Email: sfi5068@psu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Palmer amaranth (Amaranthus palmeri S. Watson) is a major biotic constraint in agronomic cropping systems in the United States. While crop–weed competition models offer a beneficial tool for understanding and predicting crop yield losses, within these models, certain weed biological characteristics and their responses to the environment are unknown. This limits understanding of weed growth in competition with crops under different irrigation methods and how competition for soil moisture affects crop growth parameters. This research measured the effect of center-pivot irrigation (CPI) and subsurface drip irrigation (SDI) on the actual evapotranspiration (ETa) of A. palmeri grown in maize (Zea mays L.), soybean [Glycine max (L.) Merr.], and fallow subplots. Twelve A. palmeri plants were alternately transplanted 1 m apart in the middle two rows of maize, soybean, and fallow subplots under CPI and SDI in 2019 and 2020 in south-central Nebraska. Maize, soybean, and fallow subplots without A. palmeri were included for comparison. Soil-moisture sensors were installed at 0-0.30, 0.30-0.60, and 0.60-0.90-m soil depths next to or between three A. palmeri and crop plants in each subplot. Soil-moisture data were recorded hourly from the time of A. palmeri transplanting to crop harvest. The results indicate differences in A. palmeri ETa between time of season (early, mid-, and late season) and crop type across 2019 and 2020. Although irrigation type did not affect subplot data, the presence of A. palmeri had an impact on subplot ETa across both years, which can be attributed to the variable relationship between volumetric soil water content (VWC) and ETa throughout the growing season due to advancing phenological stages and management practices. This study provides important and first-established baseline data and information about A. palmeri evapotranspiration and its relation to morphological features for future use in mechanistic crop–weed competition models.

Information

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Weed Science Society of America

Footnotes

Associate Editor: Muthukumar V. Bagavathiannan, Texas A & M University

References

Appleby, AP, Muller, F, Carpy, S (2000) Weed control. Pages 687707 in Muller, F, ed. Agrochemicals. New York: Wiley Google Scholar
Berger, ST, Ferrell, JA, Rowland, DL, Webster, TM (2015) Palmer amaranth (Amaranthus palmeri) competition for water in cotton. Weed Sci 63:928935 CrossRefGoogle Scholar
Bryant, KJ, Benson, VW, Kiniry, JR, Williams, JR, Lacewell, RD (1992) Simulating corn yield response to irrigation timings: validation of the EPIC model. J Prod Agric 5:237242 CrossRefGoogle Scholar
Chahal, PS, Irmak, S, Jugulam, M, Jhala, AJ (2018) Evaluating effect of degree of water stress on growth and fecundity of Palmer amaranth (Amaranthus palmeri) using soil moisture sensors. Weed Sci 66:738745 CrossRefGoogle Scholar
Chauhan, BS, Johnson, DE (2010) The role of seed ecology in improving weed management strategies in the tropics. Adv Agron 105:221262 CrossRefGoogle Scholar
Cousens, R, Brain, P, O’Donovan, JT, O’Sullivan, PA (1987) The use of biologically realistic equations to describe the effects of weed density and relative time of emergence on crop yield. Weed Sci 35:720725 CrossRefGoogle Scholar
Culpepper, AS, Webster, TM, Sosnoskie, LM, York, AC (2010) Glyphosate-resistant Palmer amaranth in the US. Pages 195212 in Nandula, VK, ed. Glyphosate Resistance in Crops and Weeds. Hoboken, NJ: Wiley CrossRefGoogle Scholar
De Sanctis, JH, Jhala, AJ (2021) Interaction of dicamba, fluthiacet-methyl, and/or glyphosate for control of velvetleaf in dicamba/glyphosate-resistant soybean. Weed Technol 35:761767 CrossRefGoogle Scholar
Diggle, AJ, Neve, PB, Smith, FP (2003) Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res 43:371382 CrossRefGoogle Scholar
Djaman, K, Irmak, S (2012) Soil water extraction patterns and crop-, irrigation-, and evapotranspiration water use efficiency of maize under full and limited irrigation and rainfed settings. Trans ASABE 55:12231238 CrossRefGoogle Scholar
Ehleringer, J (1983) Ecophysiology of Amaranthus palmeri, a Sonoran Desert summer annual. Oecologia 57:107112 CrossRefGoogle Scholar
Ehleringer, J (1985) Annuals and perennials of warm deserts. Page 162180 in Chabot, BF, Mooney, HA, eds. Physiological Ecology of North American Plant Communities. Dordrecht, Netherlands: Springer CrossRefGoogle Scholar
Ehleringer, J, Forseth, I (1980) Solar tracking by plants. Science 210:10941098 CrossRefGoogle ScholarPubMed
Firbank, LG, Watkinson, AR (1985) A model of interference within plant monocultures. J Theor Biol 116:291311 CrossRefGoogle Scholar
Franssen, AS, Skinner, DZ, Al-Khatib, K, Horak, MJ, Kulakow, PA (2001) Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci 49:598606 CrossRefGoogle Scholar
Heap, I (2014) Herbicide resistant weeds. Pages 281301 in Pimentel, D, Peshin, R, eds. Integrated Pest Management. Dordrecht, Netherlands: Springer CrossRefGoogle Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 CrossRefGoogle Scholar
Irmak, S (2010) Nebraska water and energy flux measurement, modeling, and research network (NEBFLUX). Trans ASABE 53:10971115 CrossRefGoogle Scholar
Irmak, S (2015) Inter-annual variation in long-term center pivot-irrigated maize evapotranspiration (ET) and various water productivity response indices: Part I. Grain yield, actual and basal ET, irrigation-yield production functions, ET-yield production functions, and yield response factors. J Irrig Drain Eng 141:117.CrossRefGoogle Scholar
Irmak, S (2019a) Perspectives and Considerations for Soil Moisture Sensing Technologies and Soil Water Content- and Soil Matric Potential-based Irrigation Trigger Values. Lincoln: Extension NebGuide 3045. 8 pGoogle Scholar
Irmak, S (2019b) Soil-Water Potential and Soil-Water Content Concepts and Measurement Methods. Lincoln, NE: Extension Circular EC3046. 18 pGoogle Scholar
Irmak, S, Burgert, MJ, Yang, H, Cassman, KG, Walters, DT, Rathje, WR, Payero, JO, Grassini, P, Kuzila, MS, Brunkhorst, KJ, Eisenhauer, DE, Kranz, WL, VanDeWalle, B, Rees, JM, Zoubek, GL, et al. (2012) Large scale on-farm implementation of soil moisture-based irrigation management strategies for increasing maize water productivity. Trans ASABE 55:881894 CrossRefGoogle Scholar
Irmak, S, Haman, DZ, Irmak, A, Jones, JW, Campbell, KL, Crisman, TL (2004) Measurement and analysis of growth and stress parameters of Viburnum odoratissimum (Ker-gawl) grown in a multi-plot box system. HortScience 39:14451455 CrossRefGoogle Scholar
Irmak, S, Payero, J, VanDeWalle, B, Rees, J, Zoubek, G, Martin, D, Kranz, W, Eisenhauer, D, Leininger, D (2016) Principles and Operational Characteristics of Watermark Granular Matrix Sensor to Measure Soil Water Status and Its Practical Applications for Irrigation Management in Various Soil Textures. Lincoln, NE; Extension Circular EC783. 14 pGoogle Scholar
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199204 CrossRefGoogle Scholar
Lawless, JF (2002) Statistical Models and Methods for Lifetime Data. 2nd ed. Hoboken, NJ: Wiley. Pp 25, 164170 CrossRefGoogle Scholar
Mahoney, DJ, Jordan, DL, Hare, AT, Leon, RG, Roma-Burgos, N, Vann, MC, Jennings, KM, Everman, WJ, Cahoon, CW (2021) Palmer amaranth (Amaranthus palmeri) growth and seed production when in competition with peanut and other crops in North Carolina. Agron J 11:1734 Google Scholar
Massinga, RA, Currie, RS, Trooien, TP (2003) Water use and light interception under Palmer amaranth (Amaranthus palmeri) and corn competition. Weed Sci 51:523531 CrossRefGoogle Scholar
Mohler, CL (2004) Enhancing the competitive ability of crops. Pages 269321 in Liebman, M, Mohler, CL, Staver, CP, eds. Ecological Management of Agricultural Weeds. Cambridge: Cambridge University Press Google Scholar
Monteith, JL (1965) The state of movement of water in living organisms: evaporation and environment. Pages 205234 in Proceedings of the Society of Experimental Biology, Symposium 19. Cambridge: Cambridge University Press Google Scholar
Nelson, W (1982) Applied Life Data Analysis. 1st ed. Hoboken, NJ: Wiley. Pp 4447 CrossRefGoogle Scholar
Neve, P, Diggle, AJ, Smith, FP (2003) Simulating evolution of glyphosate resistance in Lolium rigidum I: population biology of a rare resistance trait. Weed Res 43:404417 CrossRefGoogle Scholar
Nielsen, DC, Lyon, DJ, Higgins, RK, Hergert, GW, Holman, JD, Vigil, MF (2016) Cover crop effect on subsequent wheat yield in the central Great Plains. Agron J 108:243256 CrossRefGoogle Scholar
[NCEI] NOAA National Centers for Environmental Information (2020) Climate Normals. https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals. Accessed: August 31, 2023Google Scholar
Pantone, DJ, Baker, JB (1991) Reciprocal yield analysis of red rice (Oryza sativa) competition in cultivated rice. Weed Sci 39:4247 CrossRefGoogle Scholar
Paredes, P, Rodrigues, GC, Alves, I, Pereira, LS (2014) Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric Water Manag 135:2739 CrossRefGoogle Scholar
Park, SE, Benjamin, LR, Watkinson, AR (2002) Comparing biological productivity in cropping systems: a competition approach. J Appl Ecol 39:416426 CrossRefGoogle Scholar
Peltzer, S, Dougla, A, Diggle, AJ, George, W, Renton, M (2012) The Weed Seed Wizard: have we got a solution for you! Pages 99–102 in Proceedings of the 18th Australasian Weeds Conference. Victoria, Melbourne: Weed Society of VictoriaGoogle Scholar
Robinson, C, Nielsen, D (2015) The water conundrum of planting cover crops in the Great Plains: when is an inch not an inch? Crops Soils 48:2431 CrossRefGoogle Scholar
Sarangi, D, Irmak, S, Lindquist, JL, Knezevic, SZ, Jhala, AJ (2015) Effect of water stress on the growth and fecundity of common waterhemp (Amaranthus rudis). Weed Sci 64:4252 CrossRefGoogle Scholar
Sellers, BA, Smeda, RJ, Johnson, WG, Kendig, JA, Ellersieck, MR (2017) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333 CrossRefGoogle Scholar
Singh, M, Kaur, S, Chauhan, BS (2020) Weed interference models. Pages 117142 in Chantre, G, Gonzalez-Andujar, J, eds. Decision Support Systems for Weed Management. Cham, Switzerland: Springer CrossRefGoogle Scholar
Steckel, LE (2007) The dioecious Amaranthus spp.: here to stay. Weed Technol 21:567570 CrossRefGoogle Scholar
Sugita, M, Matsuno, A, El-Kilani, RM, Abdel-Fattah, A, Mahmoud, MA (2017) Crop evapotranspiration in the Nile delta under different irrigation methods. Hydrolog Sci J 62:16181635 CrossRefGoogle Scholar
Unger, PW, Vigil, MF (1998) Cover crop effects on soil water relationships. J Soil Water Conserv 53:200207 Google Scholar
Van Acker, RC (2009) Weed biology serves practical weed management. Weed Res 49:15 CrossRefGoogle Scholar
Wilson, TG, Kustas, WP, Alfieri, JG, Anderson, MC, Gao, F, Prueger, JH, McKee, LG, Alsina, MM, Sanchez, LA, Alstad, KP (2020) Relationship between soil water content, evapotranspiration, and irrigation measurements in a California drip-irrigated Pinot noir vineyard. Agric Water Manag 237, 10.1016/j.agwat.2020.106186CrossRefGoogle Scholar
Wright, SR, Jennette, MW, Coble, HD, Rufty, TW Jr (1999) Root morphology of young Glycine max, Senna obtusifolia, and Amaranthus palmeri. Weed Sci 47:706711 CrossRefGoogle Scholar