Skip to main content
×
×
Home

Factors affecting Campsis radicans seed germination and seedling emergence

  • Demosthenis Chachalis and Krishna N. Reddy (a1)
Abstract

The effects of environmental factors on germination and emergence of Campsis radicans seeds were examined in laboratory and greenhouse experiments. Campsis radicans pods produced numerous, papery, and small seeds (696 seeds/pod; 4 mg/seed). Seeds exhibited dormancy that was relieved (74% germination) after 2 wk of prechilling. Fluctuating temperatures and a 12-h photoperiod were required for maximum germination. Optimum conditions for C. radicans seed germination (74%) were 35/25 C (day/night, 12/12 h) with a 12-h photoperiod. Temperatures below 25/15 C or above 40/30 C were unfavorable for germination. Germination in constant temperatures or in continuous darkness was less than 15%. More than 59% of C. radicans seeds germinated at pH 5 to 9, but at pH 4 or 10 seed germination was totally inhibited. Germination was totally inhibited at osmotic stress higher than −0.2 MPa. Germination was 60% at 40 mM NaCl and 20% at 160 mM NaCl. Emergence was maximum (68%) for seeds that were placed on the soil surface, but no seedlings emerged from a soil depth at 4 cm. About 10% of seeds were still viable even after 20 wk of prechilling. Each pod contained about 700 seeds and each plant produced 20 to 40 pods. These results suggest that the spread potential of C. radicans by seeds would be at least 1,400 to 2,800 seeds plant−1. However, only seeds near the soil surface would be able to germinate.

Copyright
Corresponding author
Corresponding author. Southern Weed Science Research Unit, USDA-ARS, P.O. Box 350, Stoneville, MS 38776; chachali@ag.gov
References
Hide All
Balyan, R. S. and Bhan, V. M. 1986. Germination of horse purslane (Trianthema portulacastrum) in relation to temperature, storage conditions, and seedling depths. Weed Sci. 34:513515.
Benech Arnold, R. L., Ghersa, C. M., Sanchez, R. A., and Insausti, P. 1990. Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers. seeds: a quantitative analysis. Weed Res. 30:8189.
Benvenuti, S. 1995. Soil light penetration and dormancy of Jimsonweed (Datura stramonium) seeds. Weed Sci. 43:389393.
Bewley, J. D. and Black, M. 1982. The release from dormancy. Pages 127198 In Bewley, J. D. and Black, M., eds. Physiology and Biochemistry of Seeds. Berlin: Springer-Verlag.
Bonner, F. T. 1974. Campsis radicans (L.) Seem, common C. radicans . Pages 260261 In Schopmener, C. S., ed. Seeds of Woody Plants in the United States. Washington, DC: U.S. Department of Agriculture, Forest Service Handbook No. 450.
Dowler, C. C. 1998. Weed survey-southern states broadleaf crops subsection. Proc. South. Weed. Sci. Soc. 51:299313.
Egley, G. H. and Duke, S. O. 1985. Physiology of weed seed dormancy and germination. Pages 2764 In Duke, S. O., ed. Weed Physiology. Volume I. Reproduction and Ecophysiology. Boca Raton, FL: CRC Press.
Elmore, C. D. 1984. Perennial vines in the Delta of Mississippi. Mississippi State, MS: Mississippi State University, Mississippi Agricultural and Forestry Experiment Station Bull. 927. 9 p.
Evetts, L. L. and Burnside, O. C. 1972. Germination and seedling development of common milkweed and other species. Weed Sci. 20:371378.
Jain, R. and Singh, M. 1989. Factors affecting goatweed (Scoparia dulcis) seed germination. Weed Sci. 37:766770.
[ISTA] International Seed Testing Association. 1985 International rules for seed testing. Seed Sci. Technol. 13:307513.
Miles, J. E., Nishimoto, R. K., and Kawabata, O. 1996. Diurnally alternating temperatures stimulate sprouting of purple nutsedge (Cyperus rotundus) tubers. Weed Sci. 44:122125.
Nishimoto, R. K. and McCarty, L. B. 1997. Fluctuating temperatures and light influence seed germination of goosegrass (Eleusine indica). Weed Sci. 45:426429.
Popay, A. I. and Roberts, E. H. 1970. Factors involved in the dormancy and germination of Capsella bursa-pastoris (L.) Medik. and Senecio vulgaris (L.) J. Ecol. 58:103121.
Reddy, K. N. and Singh, M. 1992. Germination and emergence of hairy beggarticks (Bidens pilosa). Weed Sci. 40:195199.
Rubin, B. and Benjamin, A. 1984. Solar heating of the soil: involvement of environmental factors in the weed control process. Weed Sci. 32:138142.
Shaw, D. R., Mack, R. E., and Smith, C. A. 1991. Redvine (Brunnichia ovata) germination and emergence. Weed Sci. 39:3336.
Singh, M. and Achhireddy, N. R. 1984. Germination and ecology of milk-weedvine (Morrenia odorata). Weed Sci. 32:781785.
Soteres, J. K. and Murray, D. S. 1981. Germination and development of honeyvine milkweed (Ampelamus albidus) seeds. Weed Sci. 29:625628.
Steuter, A. A., Mozafar, A., and Goodin, J. R. 1981. Water potential of aqueous polyethylene glycol. Plant. Physiol. 67:6467.
Taylorson, R. B. 1987. Environmental and chemical manipulation of weed seed dormancy. Rev. Weed Sci. 3:135154.
Wilson, R. G. Jr. 1979. Germination and seedling development of Canada thistle (Cirsium arvense). Weed Sci. 27:146151.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 196 *
Loading metrics...

* Views captured on Cambridge Core between 20th January 2017 - 15th August 2018. This data will be updated every 24 hours.