Skip to main content Accessibility help
×
Home

The First Cases of Evolving Glyphosate Resistance in UK Poverty Brome (Bromus sterilis) Populations

  • Laura R. Davies (a1), Richard Hull (a2), Stephen Moss (a3) (a4) and Paul Neve (a3)

Abstract

Poverty brome (Bromus sterilis L.) [sterile or barren brome, syn. Anisantha sterilis (L.) Nevski] is a problematic UK arable weed. There are currently no confirmed cases of glyphosate resistance in any weed species in the United Kingdom or in B. sterilis worldwide. However, there are reports of poor control by glyphosate in this species. Here, we report experiments to confirm the suspected on-farm resistance of B. sterilis populations to glyphosate. Glyphosate screening and dose–response experiments established that glyphosate sensitivity of three UK B. sterilis populations exhibiting poor field control is outside the normal range of sensitivity of 30 sensitive populations and adjacent unexposed populations. Control of sensitive populations ranged from 49% to 82% and for suspected resistant populations from 21% to 30%. Dose–response ED50 values of sensitive populations ranged between 241 and 313 g ai ha−1; corresponding values of suspected resistant populations ranged between 420 and 810 g ha−1, and resistance indices ranged from 1.55 to 4.5. Suspected resistant populations were incompletely controlled at the recommended field rate of glyphosate (540 g ha−1), while adjacent unexposed populations were completely controlled. We conclude that some UK populations of B. sterilis have reduced glyphosate sensitivity and are in the process of evolving resistance. This is the first reported case of reduced glyphosate sensitivity in any UK weed species and in B. sterilis worldwide. This, coupled with increasing glyphosate use, highlights the need for increased vigilance and monitoring for glyphosate resistance in the United Kingdom.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The First Cases of Evolving Glyphosate Resistance in UK Poverty Brome (Bromus sterilis) Populations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The First Cases of Evolving Glyphosate Resistance in UK Poverty Brome (Bromus sterilis) Populations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The First Cases of Evolving Glyphosate Resistance in UK Poverty Brome (Bromus sterilis) Populations
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Laura Davies, ADAS Boxworth, Battlegate Road, Boxworth, CB23 4NN, UK. (Email: Laura.Davies@ADAS.co.uk)

References

Hide All
Barroso, J, Loureiro, I, Escorial, MC Chueca, MC (2010) The response of Bromus diandrus and Lolium rigidum to dalapon and glyphosate I: baseline sensitivity. Weed Res 50:312319.
Beckie, HJ (2011) Herbicide-resistant weed management: focus on glyphosate. Pest Manage Sci 67:10371048
Burgos, NR, Shivrain, VK, Scott, RC, Mauromoustakos, A, Kuk, YI, Sales, MA Bullington, J (2011) Differential tolerance of weedy red rice (Oryza sativa L.) from Arkansas, USA to glyphosate. Crop Prot 30:986994
Chauvel, B, Guillemin, JP, Gasquez, J Gauvrit, C (2012) History of chemical weeding from 1944 to 2011 in France: changes and evolution of herbicide molecules. Crop Prot 42:320326
Clark, RDA (2012) Perspective on the role of quantitative structure–activity and structure–property relationships in herbicide discovery. Pest Manage Sci 68:513518.
Clarke, J (2000) The future for grass weed management in the UK. Pestic Outlook 11:5963
Collavo, A Sattin, M (2014) First glyphosate-resistant Lolium spp. biotypes found in a European annual arable cropping system also affected by ACCase and ALS resistance. Weed Res 54:325334
Cook, SK, Wynn, SC Clarke, JH (2010) How valuable is glyphosate to UK agriculture and the environment? Outlooks on Pest Management 21:280284
Davies, LR Neve, P (2017) Interpopulation variability and adaptive potential for reduced glyphosate sensitivity in Alopecurus myosuroides . Weed Res 57:323332
Escorial, C, Loureiro, I, Rodriguez-Garcia, E Chueca, C (2011) Population variability in the response of ripgut brome (Bromus diandrus) to sulfosulfuron and glyphosate herbicides. Weed Sci 59:107112
Garthwaite, D, Barker, I, Ridley, L, Mace, A, Parrish, G, MacArthur, R Lu, Y (2018) Pesticide Usage Report 271: Arable Crops in the United Kingdom 2016. York, UK: FERA pp 93
Green, JM, Barker, JHA, Marshall, EJP, Froud-Williams, RJ, Peters, NCB, Arnold, GM, Dawson, K Karp, A (2001) Microsatellite analysis of the inbreeding grass weed barren brome (Anisantha sterilis) reveals genetic diversity at the within- and between-farm scales. Mol Ecol 10:10351045
Heap, I (2018) The International Survey of Herbicide Resistant Weeds. www.weedscience.com. Accessed: June 28, 2018
Hicks, HL, Comont, D, Coutts, SR, Crook, L, Hull, R, Norris, K, Neve, P, Childs, DZ Freckelton, RP (2018) The factors driving evolved herbicide resistance at a national scale. Nat Ecol Evol 2:529536
Lintell Smith, G, Freckleton, RP, Firbank, LG Watkinson, AR (1999) The population dynamics of Anisantha sterilis in winter wheat: comparative demography and the role of management. J Appl Ecol 36:455471
Malone, JM, Morran, S, Shirley, N, Boutsalis, P Preston, C (2016) EPSPS gene amplification in glyphosate-resistance Bromus diandrus . Pest Manage Sci 72:8188
Moss, SR (2017a) Black-grass (Alopecurus myosuroides): why has this weed become such a problem in Western Europe and what are the solutions? Outlooks on Pest Management 28:207212
Moss, SR (2017b) Herbicide resistance in weeds. Pages 181–214 in Hatcher PE, Froud-Williams RJ, eds. Weed Research: Expanding Horizons. Chichester, UK: Wiley
Moss, SR, Marshall, R, Hull, R Alarcon-Reverte, R (2011) Current status of herbicide-resistant weeds in the United Kingdom. Asp Appl Biol 106:110
Neve, P (2008) Simulation modelling to understand the evolution and management of glyphosate resistance in weeds. Pest Manage Sci 64:392401
Neve, P, Diggle, AJ, Smith, FP Powles, SB (2003) Simulating evolution of glyphosate resistance in Lolium rigidum II: past, present and future glyphosate use in Australian cropping. Weed Res 43:418427
Owen, MJ Martinez, NJ Powles, SB (2014) Multiple herbicide‐resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res 54:314324
Peters, NCB, Froud-Williams, RJ Orson, JH (1993) The rise of barren brome Bromus sterilis in UK cereal crops. Pages 773780 in Brighton Crop Protection Conference—Weeds. Volume 2. Farnham, UK: British Crop Protection Council
Powles, SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manage Sci 64:360365
Powles, SB, Lorraine-Colwill, DF, Dellow, JJ Preston, C (1998) Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci 46:604607
Ritz, C, Baty, F, Streibig, JC Gerhard, D (2015) Dose-response analysis using R. PLoS ONE 10(12): e0146021, doi:10.1371/journal.pone.0146021
Smart, SM, Bunce, RGH, Marrs, R, LeDuc, M, Firbank, LG, Maskell, LC, Scott, WA, Thompson, K Walker, KJ (2005) Large-scale changes in the abundance of common higher plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: tests of hypothesised changes in trait representation. Biol Conserv 124:355371
Steinmann, HH Klingebiel, L (2004) Secondary dispersal, spatial dynamics and effects of herbicides on reproductive capacity of a recently introduced population of Bromus sterilis in an arable field. Weed Res 44:388396
Vencill, WK, Nichols, R, Webster, TM, Soteres, JK, Mallory-Smith, C, Burgos, NR, Johnson, WG McClelland, MR (2012) Herbicide resistance: toward an understanding of resistance developments and the impact of herbicide-resistant crops. Weed Sci 60:230
Woodburn, AT (2000) Glyphosate: production, pricing and use worldwide. Pest Manage Sci 56:309312

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed