Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-18T10:30:39.649Z Has data issue: false hasContentIssue false

Ozone-Herbicide Interactions on Sorghum (Sorghum bicolor) and Velvetleaf (Abutilon theophrasti) Seedlings

Published online by Cambridge University Press:  12 June 2017

Kriton K. Hatzios
Affiliation:
Dep. Plant Pathol. and Physiol., Virginia Polytech. Inst. and State Univ., Blacksburg, VA 24061
Yaw-Shing Yang
Affiliation:
Dep. Plant Pathol. and Physiol., Virginia Polytech. Inst. and State Univ., Blacksburg, VA 24061

Abstract

The potential interactive effects between the herbicides chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl] benzenesulfonamide}, PP009 {butyl 2-[4-[5-(trifluoromethyl-2-pyridinyl) oxy] phenoxy] propanoate}, and BAS 9052 OH {2-[1-(ethoxyimino)-butyl]-5-[2-(ethylthio)-propyl]-3-hydroxy-2-cyclohexene-one} and the air pollutant ozone (O3) on the growth of sorghum [Sorghum bicolor (L.) Moench. ‘Funk G623rg’] and velvetleaf (Abutilon theophrasti Medic. # ABUTH) were examined. All three herbicides were applied postemergence either before or after a single 6-h fumigation of sorghum and velvetleaf seedlings with O3 at 0, 0.1, and 0.2 ppmv. Chlorsulfuron was applied at 0, 0.06, or 0.12 kg ai/ha, while PP009 and BAS 9052 OH were applied at 0, 0.6, and 1.2 kg ai/ha. Two weeks after treatment, dry weight responses of velvetleaf seedlings revealed that PP009 interacted synergistically while chlorsulfuron and BAS 9052 OH interacted antagonistically with O3. The sequence of O3 fumigation and herbicide treatment appeared to be an important factor determining the type of interactive effects of these herbicides with O3. The interactive effects of all three herbicides with O3 on sorghum seedlings were additive regardless of the sequence of O3 fumigation and herbicide treatment.

Type
Research Article
Copyright
Copyright © 1983 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Literature Cited

1. Carney, A. W., Stephenson, G. R., Ormrod, D. P., and Ashton, C. G. 1973. Ozone-herbicide interactions in crop plants. Weed Sci. 21:508511.CrossRefGoogle Scholar
2. Heath, R. L. 1975. Ozone. Pages 2355 in Mudd, J. B. and Kozlowski, T. T., eds. Responses of Plants to Air Pollution. Academic Press, NY.Google Scholar
3. Heath, R. L. 1980. Initial events in injury to plants by air pollutants. Annu. Rev. Plant Physiol. 31:395431.CrossRefGoogle Scholar
4. Heck, W. W., Philbeck, R. B., and Dunning, J. A. 1978. A continuous stirred tank reactor (CSTR) system for exposing plants to gaseous air contaminants: Principles, specifications, construction, and operation. ARS-S-181 U.S. Dep. Agric., Agric. Res. Serv., Raleigh, NC. 32.Google Scholar
5. Hodgston, R. H. 1970. Alteration of triazine metabolism by ozone. Abstr. Weed Sci. Soc. Am. No. 28.Google Scholar
6. Hodgson, R. H., Frear, D. S., Swanson, H. R., and Regan, L. A. 1973. Alteration of diphenamid metabolism in tomato by ozone. Weed Sci. 21:542549.Google Scholar
7. Hodgson, R. H., Dusbabek, K. E., and Hoffer, B. L. 1974. Diphenamid metabolism in tomato: Time course of an ozone fumigation effect. Weed Sci. 22:205210.CrossRefGoogle Scholar
8. Hodgson, R. H. and Hoffer, B. L. 1977. Diphenamid metabolism in pepper and an ozone fumigation effect. I. Absorption, translocation and the extent of metabolism. Weed Sci. 25:324330.CrossRefGoogle Scholar
9. Hodgson, R. H. and Hoffer, B. L. 1977. Diphenamid metabolism in pepper. II. Herbicide metabolite characterization. Weed Sci. 25:331337.Google Scholar
10. Lawrence, J. A. and Weinsten, L. H. 1981. Effects of air pollutants on plant productivity. Annu. Rev. Phytopathol. 19:257271.Google Scholar
11. Levitt, G., Ploeg, H. L., Weigel, R. C. Jr., and Fitzgerald, D. T. 1981. 2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino carbonyl] benzenesulfonamide, a new herbicide. J. Agric. Food Chem. 29:416418.Google Scholar
12. McAvoy, W. J., Hendrik, L. W., Veenstra, M. A., Sciarappa, W. J., Schroeder, M., and Tasker, A. 1980. Selective postemergence perennial grass control with BAS 9052 OH. Abstr. Weed Sci. Soc. Am. No. 28.Google Scholar
13. Nash, R. G. 1981. Phytotoxic interaction studies - Techniques for evaluation and presentation of results. Weed Sci. 29:147155.Google Scholar
14. Pearson, J. O. 1980. Postemergence graminicide for broadleaf crops. Abstr. Weed Sci. Soc. Am., No. 245.Google Scholar
15. Phatak, S. C. and Proctor, T.J.A. 1976. Ozone and metribuzin interaction in tomatoes. Abstr. Weed Sci. Soc. Am., No. 173.Google Scholar
16. Plowman, R. E., Stonebridge, W. C., and Hawtree, J. N. 1980. Fluazifop-butyl—A new selective herbicide for the control of annual and perennial grass weeds. Proc. Br. Crop Prot. Conf.— Weeds. 1:2937.Google Scholar
17. Putnam, A. R. and Penner, D. 1974. Pesticide interactions in higher plants. Residue Rev. 50:73110.Google Scholar
18. Reilly, J. J. and Moore, L. D. 1982. Influence of selected herbicides on ozone injury in tobacco (Nicotiana tabacum). Weed Sci. 30:260263.Google Scholar
19. Rich, S. 1975. Interactions of air pollution and agricultural practices. Pages 335360 in Mudd, J. B. and Kozlowski, T. T., eds. Responses of Plants to Air Pollution. Academic Press, NY.Google Scholar
20. Rosser, S. W., Zorner, P. S., Witt, W. W., and Olson, G. L., 1982. Uptake of fluazifop-butyl and accumulation of its free acid metabolite in johnsongrass. Proc. South. Weed Sci. Soc. 35:339.Google Scholar
21. Steel, R.G.D. and Torrie, T. H. 1960. Principles and Procedures of Statistics. McGraw-Hill, NY. 481.Google Scholar
22. Sung, S. S. and Moore, L. D. 1979. The influence of three herbicides on the sensitivity of greenhouse-grown flue-cured tobacco (Nicotiana tabacum) plants to ozone. Weed Sci. 27:167173.Google Scholar
23. Tingey, D. J. 1974. Ozone induced alteration in the metabolite pools and enzyme activities of plants. Pages 4057 in Dugger, W. M., ed. Air Pollution Effects on Plant Growth. Am. Chem. Soc. Symp. Ser., No. 3. Am. Chem. Soc. Washington, DC.Google Scholar
24. Todd, G. W. 1972. Water deficits and enzyme activity. Pages 177216 in Kozlowski, T. T., ed. Deficits and Plant Growth, Vol. III. Academic Press, NY.Google Scholar
25. Yang, Y. S. and Chevone, B. I. 1982. Characterization of ambient oxidant pollutants in the Blue Ridge mountains of Virginia. Phytopathology 72:712 (Abstr.).Google Scholar