Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T15:09:17.970Z Has data issue: false hasContentIssue false

Physiological basis for antagonism of clethodim by CGA 362622

Published online by Cambridge University Press:  20 January 2017

Ian C. Burke
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695

Abstract

Greenhouse and laboratory experiments were conducted to determine the effect of CGA 362622 on the herbicidal activity of clethodim on goosegrass. CGA 362622 did not affect absorption and translocation of 14C-clethodim by goosegrass. Averaged across the two treatments of clethodim alone and clethodim plus CGA 362622, absorption was 27 and 85% of the applied 14C-clethodim at 0.5 and 96 h, respectively. By 96 HAT, only 0.8% of applied 14C had translocated to the shoot below the treated leaf. Metabolism of clethodim was not affected by the presence of CGA 362622. Three metabolites of clethodim were detected in treated tissue at all harvest intervals. By 96 HAT, 56% of absorbed 14C converted to a relatively polar form when clethodim was applied alone or in the presence of CGA 362622. One day after treatment, the photosynthetic rate in plants treated with CGA 362622 had decreased below the rate in the nontreated check and remained lower until 6 d after treatment. These data suggest that the antagonism of clethodim by CGA 362622 may result from CGA 362622 altering the photosynthetic rate of goosegrass and therefore the sensitivity of acetyl-coenzyme A carboxylase to clethodim.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2001. Select 2EC®. Pages 26062614 in Crop Protection Reference. 17th ed. New York: C & P Press.Google Scholar
Ashton, F. M. and Crafts, A. S. 1981. Mode of Action of Herbicides. 2nd ed. New York: J. Wiley. Pp. 221222.Google Scholar
Askew, S. D. and Wilcut, J. W. 2002. Absorption, translocation, and metabolism of foliar-applied CGA-362622 in cotton, peanut, and selected weeds. Weed Sci 50:293298.CrossRefGoogle Scholar
Bestman, H. D., Devine, M. D., and Vanden Born, W. H. 1990. Herbicide chlorsulfuron decreases assimilate transport out of treated leaves of field pennycress (Thalspi arvense L.) seedlings. Plant Physiol 93:14411448.CrossRefGoogle Scholar
Bjelk, L. A. and Monaco, T. J. 1992. Effect of chlorimuron and quizalofop on fatty acid biosynthesis. Weed Sci 40:16.CrossRefGoogle Scholar
Brezeanu, A. G., Davis, D. G., and Shimabukuro, R. H. 1976. Ultrastructural effects and translocation of methyl 2-[4-(2,4-dichloro-phenoxy)phenoxy]propionate in wheat (Triticum aestivum) and wild oat (Avena fatua). Can. J. Bot 54:20382048.CrossRefGoogle Scholar
Burke, I. C., Wilcut, J. W., and Porterfield, D. 2002. CGA 362622 antagonizes annual grass control with clethodim. Weed Technol 16:749754.CrossRefGoogle Scholar
Burton, J. D., Gronwald, J. W., Somers, D. A., Connelly, J. A., Gengenbach, B. G., and Wyse, D. L. 1987. Inhibition of acetyl-CoA carboxylase by the herbicides sethoxydim and haloxyfop. Biochem. Biophys. Res. Commun 148:10391044.CrossRefGoogle ScholarPubMed
Byrd, J. D. Jr. and York, A. C. 1987. Interaction of fluometuron and MSMA with sethoxydim and fluazifop. Weed Sci 35:270276.CrossRefGoogle Scholar
Campbell, J. R. and Penner, D. 1985. Sethoxydim metabolism in monocotyledonous and dicotyledonous plants. Weed Sci 33:771773.CrossRefGoogle Scholar
Campbell, J. R. and Penner, D. 1987. Retention, absorption, translocation, and distribution of sethoxydim in monocotyledonous and dicotyledonous plants. Weed Res 27:179186.CrossRefGoogle Scholar
Chandrasena, J. P. N. R. and Sagar, G. R. 1987. Effect of fluazifop-butyl on the chlorophyll content, fluorescence and chloroplast ultrastructure of Elymus repens (L.) Gould. leaves. Weed Res 27:103112.CrossRefGoogle Scholar
Chow, P. N. P. 1988. Effect of chlorsulfuron on four graminicides for weed control and wheat yield. Weed Res 28:145150.CrossRefGoogle Scholar
Crooks, H. L., York, A. C., and Culpepper, A. S. 2001. Interaction of CGA 362622 and graminicides on annual grasses in cotton. WSSA Abstr 41:59.Google Scholar
Croon, K. A., Ketchersid, M. L., and Merkle, M. G. 1989. Effect of bentazon, imazaquin, and chlorimuron on the absorption and translocation of the methyl ester of haloxyfop. Weed Sci 37:645650.CrossRefGoogle Scholar
Culpepper, A. S., Jordan, D. L., York, A. C., Corbin, F. T., and Sheldon, Y. 1999a. Influence of adjuvants and bromoxynil on absorption of clethodim. Weed Technol 13:536541.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., and Brownie, C. 1999b. Influence of bromoxynil on annual grass control by graminicides. Weed Sci 47:123128.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., Jordan, D. L., Corbin, F. T., and Sheldon, Y. S. 1999c. Basis for antagonism in mixtures of bromoxynil plus quizalofop-P applied to yellow foxtail (Setaria glauca). Weed Technol 13:515519.CrossRefGoogle Scholar
Dean, J. V., Gronwald, J. W., and Eberlein, C. V. 1990. Induction of glutathione S-transferase isozymes in sorghum by herbicide antidotes. Plant Physiol 92:467473.CrossRefGoogle ScholarPubMed
Devine, M. D. and Shimakukuro, R. H. 1994. Resistance to acetyl co-enzyme A carboxylase inhibiting herbicides. Pages 141169 in Powles, S. B. and Holtum, J.A.M. eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers.Google Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood Cliffs, NJ: PTR Prentice Hall. 101 p.Google Scholar
Draper, N. R. and Smith, H. 1981. Applied Regression Analysis. New York: J. Wiley. Pp. 3342, 511.Google Scholar
Esau, K. 1977. Anatomy of Seed Plants. New York: J. Wiley. 286 p.Google Scholar
Ferreira, K. L., Burton, J. D., and Coble, H. D. 1995. Physiological basis for antagonism of fluazifop-P by DPX-PE350. Weed Sci 43:184191.CrossRefGoogle Scholar
Focke, M. N. and Lichtenthaler, H. K. 1987. Inhibition of acetyl-CoA carboxylase of barley chloroplasts by cycloxydim and sethoxydim. Z. Naturforsch 42c:13611363.CrossRefGoogle Scholar
Gealy, D. R. and Slife, F. W. 1983. BAS 9052 effects on leaf photosynthesis and growth. Weed Sci 31:457461.CrossRefGoogle Scholar
Hashimoto, Y. K., Iwataki, I., and Soeda, Y. 1979. Fate of alloxydim-sodium on or in soybean plants. Pestic. Sci 4:299304.CrossRefGoogle Scholar
Hatzios, K. K. and Howe, C. M. 1982. Influence of the herbicides hexazinone and chlorsulfuron on the metabolism of isolated soybean leaf cells. Pestic. Biochem. Physiol 17:207214.CrossRefGoogle Scholar
Hosaka, H. and Takagi, M. 1987. Biochemical effects of sethoxydim in excised root tips of corn (Zea mays). Weed Sci 35:612618.CrossRefGoogle Scholar
Hudetz, M., Foery, W., Wells, J., and Soares, J. E. 2000. CGA 362622, a new low rate Novartis post-emergent herbicide for cotton and sugarcane. Proc. South. Weed. Sci. Soc 53:162.Google Scholar
Ickeringill, D. 1995. Tank mixing—its development—past, present and future. Proc. Asp. Appl. Biol 41:3339.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J 75:153155.CrossRefGoogle Scholar
Minton, B. W., Kurtz, M. W., and Shaw, D. R. 1989. Barnyardgrass (Echinochloa crus-galli) control with grass and broadleaf herbicide combinations. Weed Sci 37:223227.CrossRefGoogle Scholar
Myers, P. F. and Coble, H. D. 1992. Antagonism of graminicide activity on annual grass species by imazethapyr. Weed Technol 6:333338.CrossRefGoogle Scholar
Olson, W. and Nalewaja, J. D. 1982. Effect of MCPA on 14C-diclofop uptake and translocation. Weed Sci 30:5963.CrossRefGoogle Scholar
Peng, S. and Krieg, D. R. 1991. Single leaf and canopy photosynthetic response to plant age in cotton. Agron. J 83:704708.CrossRefGoogle Scholar
Porterfield, D., Wilcut, J. W., and Askew, S. D. 2002. Weed management with CGA-362622, fluometuron, and prometryn. Weed Sci 50:642647.CrossRefGoogle Scholar
Rendina, A. R. and Felts, J. M. 1988. Cyclohexanedione herbicides are selective and potent inhibitors of acetyl-CoA carboxylase from grasses. Plant Physiol 86:983986.CrossRefGoogle ScholarPubMed
Reynolds, T. L. 1986. Effects of chlorsulfuron, valine, isoleusine on division and tracheary element differentiation in cell suspension cultures of Solanum carolinense L. J. Plant Physiol 125:179184.CrossRefGoogle Scholar
Rost, T. L. 1984. The comparative cell cycle and metabolic effects of chemical treatments on root tip meristems. III. Chlorsulfuron. J. Plant Growth Regul 3:5163.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1998. SAS/STAT User's Guide. Release 7.00. Cary, NC: Statistical Analysis Systems Institute. 1028 p.Google Scholar
Shaner, D. L. and Reider, M. L. 1986. Physiological responses of corn (Zea mays) to AC 243,997 in combination with valine, leucine, and isoleucine. Pestic. Biochem. Physiol 25:248257.CrossRefGoogle Scholar
Shaner, D. L. and Singh, B. K. 1997. Acetohydroxyacid synthase inhibitors. Pages 69109 in Roe, R. M., Burton, J. D., and Kuhr, R. J. eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Burke, VA: IOS Press.Google Scholar
Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem 27:615623.CrossRefGoogle ScholarPubMed
Soeda, V., Ishihara, K., Iwataki, I., and Kamimura, H. 1979. Fate of a herbicide 14C-alloxydim-sodium in sugar beet. Pestic. Sci 4:121128.CrossRefGoogle Scholar
Wanamarta, G. and Penner, D. 1989. Identification of efficacious adjuvants for sethoxydim and bentazon. Weed Technol 3:6066.CrossRefGoogle Scholar