Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-07T20:08:55.729Z Has data issue: false hasContentIssue false

Plant diversity: new insights from molecular biology and genomics technologies

Published online by Cambridge University Press:  20 January 2017

Bruce D. Maxwell
Affiliation:
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717

Abstract

Technological advances in molecular biology have contributed substantially to our understanding of plant genetic diversity. Early studies of allozyme variation employing protein electrophoresis revealed that plant populations have high levels of genetic diversity, most of the variation at polymorphic loci is found within populations, and geographic range and breeding system explain the largest proportion of variation in genetic diversity. With the discovery of restriction endonucleases, the first DNA-based markers allowed the detection of variation in DNA sequences in plant population studies. More recently, techniques that utilize the polymerase chain reaction have allowed a more representative assessment of genetic variation in plants by screening multiple loci distributed throughout the genome. The analyses reveal sufficient polymorphism for the examination of fine-scale genetic differences among individuals. Information on plant genetic diversity is also emerging from studies of plant genome structure. Comparative genetic mapping studies of members of the Brassicaceae, Poaceae, and Solanaceae show that gene content is highly conserved between closely related species, although gene order on a chromosomal segment may differ between species. Comparative sequencing studies reveal higher degrees of diversity at the microstructural (less than 1 million base pairs) level than predicted at the genetic map level and suggest that genes are densely packed in gene-rich regions, rather than randomly distributed along chromosomes in species with large genomes. Sequencing of the entire genomes of rice and Arabidopsis thaliana will help identify genes controlling agronomically important traits, improve our understanding of genetic variation for fitness-related traits in wild plant populations including weed species, resolve evolutionary relationships among plant taxa, and potentially revolutionize current ideas on plant diversity and evolution.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abad, P., Bernardo, P., Maroto, J. V., López-Galarza, S., Vicente, M. J., and Alagarda, J. 1998. RAPD analysis of cultivated and wild yellow nutsedge (Cyperus esculentus L.). Weed Sci. 46:318321.CrossRefGoogle Scholar
Aigbokhan, E. I., Bernier, D. K., Musselman, L. J., and Mignouna, H. D. 2000. Evaluation of variability in Striga aspera, Striga hermonthica and their hybrids using morphological characters and random amplified polymorphic DNA markers. Weed Res. 40:375386.CrossRefGoogle Scholar
Amsellem, L., Noyer, J. L., Le Bourgeois, T., and Hossaert-McKey, M. 2000. Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol. Ecol. 9:443455.Google ScholarPubMed
Andrews, T. S., Morrison, I. N., and Penner, G. A. 1998. Monitoring the spread of ACCase inhibitor resistance among wild oat (Avena fatua) patches using AFLP analysis. Weed Sci. 46:196199.CrossRefGoogle Scholar
Arens, P., Coops, H., Jansen, J., and Vosman, B. 1998. Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch rivers. Mol. Ecol. 7:1118.CrossRefGoogle Scholar
Avise, J. C. 1994. Molecular Markers, Natural History, and Evolution. New York: Chapman and Hall. pp. 92138.CrossRefGoogle Scholar
Bailey, P. C., McKibbon, R. S., Lenton, J. R., Holdsworth, M. J., Flintham, J. E., and Gale, M. D. 1999. Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor. Appl. Genet. 98:281284.CrossRefGoogle Scholar
Barakat, A., Matassi, G., and Bernardi, G. 1998. Distribution of genes in the genome of Arabidopsis thaliana and its implications for the genome organization of plants. Proc. Natl. Acad. Sci. USA 95:1004410049.CrossRefGoogle ScholarPubMed
Barrett, S.C.H. and Shore, J. S. 1990. Isozyme variation in colonizing plants. Pages 106126 In Soltis, D. E. and Soltis, P. S., eds. Isozymes in Plant Biology. Portland, OR: Dioscorides Press.Google Scholar
Beismann, H., Barker, J.H.A., Karp, A., and Speck, T. 1997. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol. Ecol. 6:989993.CrossRefGoogle Scholar
Bonierbale, M. W., Plaisted, R. L., and Tanksley, S. D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:10951103.CrossRefGoogle ScholarPubMed
Brettschneider, R. 1998. RFLP analysis. Pages 8596 In Karp, A., Isaac, P. G., and Ingram, D. S., eds. Molecular Tools for Screening Biodiversity. London: Chapman and Hall.CrossRefGoogle Scholar
Brown, A.H.D. 1979. Enzyme polymorphisms in plant populations. Theor. Pop. Biol. 15:142.CrossRefGoogle Scholar
Burr, B., Evola, S. V., Burr, F. A., and Beckmann, J. S. 1983. The application of restriction fragment length polymorphisms to plant breeding. Pages 4559 In Setlow, J. K. and Hollaender, A., eds. Genetic Engineering Principles and Methods. Volume 5. New York: Plenum.Google Scholar
Cavan, G., Biss, P., and Moss, S. R. 1998a. Herbicide resistance and gene flow in wild-oats Avena sterilis ssp. ludoviciana and Avena fatua . Ann. Appl. Biol. 133:207217.CrossRefGoogle Scholar
Cavan, G., Biss, P., and Moss, S. R. 1998b. Localized origins of herbicide resistance in Alopecurus myosuroides . Weed Res. 38:239245.CrossRefGoogle Scholar
Cavan, G., Potier, V., and Moss, S. R. 2000. Genetic diversity of weeds growing in continuous wheat. Weed Res. 40:301310.CrossRefGoogle Scholar
Chang, C. and Meyerowitz, E. M. 1991. Plant genome studies: restriction fragment length polymorphism and chromosome mapping information. Curr. Opin. Genet. Dev. 1:112118.CrossRefGoogle ScholarPubMed
Chen, M., SanMiguel, P., de Oliveira, A. C., Woo, S.-S., Zhang, H., Wing, R. A., and Bennetzen, J. L. 1997. Microlinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc. Natl. Acad. Sci. USA 94:34313435.CrossRefGoogle Scholar
Ciofi, C., Funk, S. M., Coote, T., Cheesman, D. J., Hammond, R. L., Saccheri, I. J., and Bruford, M. W. 1998. Genotyping with microsatellite markers. Pages 195201 In Karp, A., Isaac, P. G., and Ingram, D. S., eds. Molecular Tools for Screening Biodiversity. London: Chapman and Hall.CrossRefGoogle Scholar
Colosi, J. C. and Schaal, B. A. 1997. Wild proso millet (Panicum miliaceum) is genetically variable and distinct from crop varieties of proso millet. Weed Sci. 45:509518.CrossRefGoogle Scholar
Cruzan, M. B. 1998. Genetic markers in plant evolutionary ecology. Ecology 79:400412.CrossRefGoogle Scholar
de Vries, G. E. 2000. Monsanto shares rice genome data. Trends Plant Sci. 5:277. http://journals.bmn.com/journals. Last accessed January 5, 2001.Google Scholar
Dekker, J. 1997. Weed diversity and weed management. Weed Sci. 37:237246.Google Scholar
Devos, K. M., Atkinson, M. D., Chinoy, C. N., Harcourt, R. L., Koebner, R.M.D., Liu, C. J., Masojc, P., Xie, D. X., and Gale, M. D. 1993a. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85:673680.CrossRefGoogle ScholarPubMed
Devos, K. M., Beales, J., Nagamura, Y., and Sasaki, T. 1999. Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot? Genome Res. 9:825829.CrossRefGoogle ScholarPubMed
Devos, K. M. and Gale, M. D. 1997. Comparative genetics in the grasses. Plant Mol. Biol. 35:315.CrossRefGoogle ScholarPubMed
Devos, K. M., Millan, T., and Gale, M. D. 1993b. Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor. Appl. Genet. 85:784792.CrossRefGoogle ScholarPubMed
Dubcovsky, J., Luo, M.-C., Zhong, G.-Y., Bransteitter, R., Desai, A., Kilian, A., Kleinhofs, A., and Dvorak, J. 1996. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983999.CrossRefGoogle ScholarPubMed
Dufour, P., Deu, M., Grivet, L., D’Hont, A., Paulet, F., Bouet, A., Lanaud, C., Glaszmann, J. C., and Hamon, P. 1997. Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor. Appl. Genet. 94:409418.CrossRefGoogle Scholar
Edwards, K. J. 1998. Randomly amplified polymorphic DNAs (RAPDs). Pages 171175 In Karp, A., Isaac, P. G., and Ingram, D. S., eds. Molecular Tools for Screening Biodiversity. London: Chapman and Hall.CrossRefGoogle Scholar
Ennos, R. A. 1994. Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250259.CrossRefGoogle Scholar
Feuillet, C. and Keller, B. 1999. High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci. USA 96:82658270.CrossRefGoogle ScholarPubMed
Gaiotto, F. A., Bramucci, M., and Grattapaglia, D. 1997. Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers. Theor. Appl. Genet. 95:842849.CrossRefGoogle Scholar
Gale, M. D. and Devos, K. M. 1998. Plant comparative genetics after 10 years. Science 282:656659.CrossRefGoogle ScholarPubMed
Gebhardt, C., Ritter, E., Barone, A., et al. 1991. RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor. Appl. Genet. 83:4957.CrossRefGoogle ScholarPubMed
Guimaraes, C. T., Sills, G. R., and Sobral, B. W. 1997. Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc. Natl. Acad. Sci. USA 94:1426114266.Google ScholarPubMed
Gutierri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in Domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670676.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci. 43:175178.CrossRefGoogle Scholar
Hamrick, J. L. and Godt, M.J.W. 1990. Allozyme diversity in plants. Pages 4363 In Brown, A.H.D., Clegg, M. T., Kahler, A. L., and Weir, B. S., eds. Plant Population Genetics, Breeding, and Genetic Resources. Sunderland, MA: Sinauer.Google Scholar
Heun, M., Murphy, J. P., and Phillips, T. D. 1994. A comparison of RAPD and isozyme analyses for determining the genetic relationships among Avena sterilis L. accessions. Theor. Appl. Genet. 87:689696.CrossRefGoogle ScholarPubMed
Hillis, D. M., Moritz, C., and Mable, B. K., eds. 1996. Molecular Systematics. 2nd ed. Sunderland, MA: Sinauer.Google Scholar
Hoelzel, A. R. 1992. Molecular Genetic Analysis of Populations: A Practical Approach. Oxford, Great Britain: IRL Press.Google Scholar
Huff, D. R., Peakall, R., and Smouse, P. E. 1993. RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theor. Appl. Genet. 86:927934.CrossRefGoogle ScholarPubMed
Hunter, R. L. and Markert, C. L. 1957. Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science 125:12941295.CrossRefGoogle ScholarPubMed
Hurst, L. D. 1999. The evolution of genomic anatomy. Trends Ecol. Evol. 14:108112.CrossRefGoogle ScholarPubMed
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.CrossRefGoogle Scholar
Jordan, N. R. and Jannink, J. L. 1997. Assessing the practical importance of weed evolution: a research agenda. Weed Res. 37:237246.CrossRefGoogle Scholar
Karp, A., Isaac, P. G., and Ingram, D. S., eds. 1998. Molecular Tools for Screening Biodiversity. London: Chapman and Hall.CrossRefGoogle Scholar
Karp, A., Seberg, O., and Buiatti, M. 1996. Molecular techniques in the assessment of botanical diversity. Ann. Bot. 78:143149.CrossRefGoogle Scholar
Keller, B. and Feuillet, C. 2000. Colinearity and gene density in grass genomes. Trends Plant Sci. 5:246251.CrossRefGoogle ScholarPubMed
Kilian, A., Chen, J., Han, F., Steffenson, B., and Kleinhofs, A. 1997. Towards map-based cloning of the barley stem rust resistance gene Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol. Biol. 35:187195.CrossRefGoogle Scholar
Korpelainen, H. 1995. Geographical differentiation in allozyme variation in Rumex acetosella subspecies acetosella and angiocarpus . Weed Res. 35:413419.CrossRefGoogle Scholar
Krauss, S. L. 1999. Complete exclusion of nonsires in an analysis of paternity in a natural plant population using amplified fragment length polymorphism (AFLP). Mol. Ecol. 8:217226.CrossRefGoogle Scholar
Lagercrantz, U. 1998. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:12171228.CrossRefGoogle ScholarPubMed
Lagercrantz, U. and Lydiate, D. J. 1996. Comparative genome mapping in Brassica . Genetics 144:19031910.CrossRefGoogle ScholarPubMed
Leister, D., Kurth, J., Laurie, D. A., Yano, M., Sasaki, T., Devos, K., Graner, A., and Schulze-Lefert, P. 1998. Rapid reorganization of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci. USA 95:370375.CrossRefGoogle ScholarPubMed
Liu, Z. and Furnier, G. R. 1993. Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theor. Appl. Genet. 87:97105.CrossRefGoogle ScholarPubMed
Livingstone, K. D., Lackney, V. K., Blauth, J. R., van Wijk, R., and Jahn, M. K. 1999. Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:11831202.CrossRefGoogle ScholarPubMed
Lopez-Martinez, N., Pujadas Salva, A., Finch, R. P., Marshall, G., and De Prado, R. 1999. Molecular markers indicate intraspecific variation in the control of Echinochloa spp. with quinclorac. Weed Sci. 47:310315.CrossRefGoogle Scholar
Loveless, M. D. and Hamrick, J. L. 1984. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15:6595.CrossRefGoogle Scholar
Lu, Z.-X., Sosinski, B., Reighard, G. L., Baird, W. V., and Abbott, A. G. 1998. Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199207.CrossRefGoogle Scholar
Lynch, M. and Milligan, B. G. 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3:9199.CrossRefGoogle ScholarPubMed
Matthes, M. C., Daly, A., and Edwards, K. J. 1998. Amplified fragment length polymorphism (AFLP). Pages 183190 In Karp, A., Isaac, P. G., and Ingram, D. S., eds. Molecular Tools for Screening Biodiversity. London: Chapman and Hall.CrossRefGoogle Scholar
Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.CrossRefGoogle Scholar
Meikle, A., Finch, R. P., McRoberts, N., and Marshall, G. 1999. A molecular genetic assessment of herbicide-resistant Sinapis arvensis . Weed Res. 39:149158.CrossRefGoogle Scholar
Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., and Koornneef, M. 1998. Arabidopsis thaliana: a model plant for genome analysis. Science 282:662682.CrossRefGoogle Scholar
Milligan, B. G. 1991. Chloroplast DNA diversity within and among populations of Trifolium pratense . Curr. Genet. 19:411416.CrossRefGoogle Scholar
Ming, R., Liu, S.-C., Lin, Y.-R., da Silva, J., Wilson, W., Braga, D., van Deynze, A. 1998. Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:16631682.CrossRefGoogle ScholarPubMed
Mitchell-Olds, T. and Bergelson, J. 2000. Biotic interactions, genomics and coevolution. Curr. Opin. Plant Biol. 3:273277.CrossRefGoogle ScholarPubMed
Moodie, M., Finch, R. P., and Marshall, G. 1997. Analysis of genetic variation in wild mustard (Sinapis arvensis) using molecular markers. Weed Sci. 45:102107.CrossRefGoogle Scholar
Moore, G., Foote, T., Helentjaris, T., Devos, K., Kurata, N., and Gale, M. 1995. Was there a single ancestral cereal chromosome? Trends Genet. 11:8182.CrossRefGoogle Scholar
Mörchen, M., Cuguen, J., Michaelis, G., Hanni, C., and Saumitouplaprade, P. 1996. Abundance and length polymorphism of microsatellite repeats in Beta vulgaris L. Theor. Appl. Genet. 92:326333.CrossRefGoogle ScholarPubMed
Mueller, U. G. and Wolfenbarger, L. L. 1999. AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14:389394.CrossRefGoogle ScholarPubMed
Nei, M. 1987. Molecular Evolutionary Genetics. New York: Columbia University Press, pp. 176207.CrossRefGoogle Scholar
Nevo, E., Beiles, A., Kaplan, D., Golenberg, E. M., Olsvig-Whittaker, L., and Naveh, Z. 1986. Natural selection of allozyme polymorphisms: a microsite test revealing ecological genetic differentiation in wild barley. Evolution 40:1320.CrossRefGoogle ScholarPubMed
Newton, A. C., Allnutt, T. R., Gillies, A.C.M., Lowe, A. J., and Ennos, R. A. 1999. Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol. Evol. 14:140145.CrossRefGoogle ScholarPubMed
Nissen, S. J., Masters, R. A., Lee, D. J., and Rowe, M. L. 1992. Comparison of restriction fragment length polymorphisms in chloroplast DNA of five leafy spurge (Euphorbia spp.) accessions. Weed Sci. 40:6367.CrossRefGoogle Scholar
Nissen, S. J., Masters, R. A., Lee, D. J., and Rowe, M. L. 1995. DNA-based marker systems to determine genetic diversity of weed species and their application to biocontrol. Weed Sci. 504513.CrossRefGoogle Scholar
O’Hanlon, P. C., Peakall, R., and Briese, D. T. 1999. AFLP reveals introgression in weedy Onopordum thistles: hybridization and invasion. Mol. Ecol. 8:12391246.CrossRefGoogle ScholarPubMed
O’Hanlon, P. C., Peakall, R., and Briese, D. T. 2000. A review of new PCR-based genetic markers and their utility to weed ecology. Weed Res. 40:239254.CrossRefGoogle Scholar
Parker, P. G., Snow, A. A., Schug, M. D., Booton, G. C., and Fuerst, P. A. 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79:361382.Google Scholar
Paterson, A. H., Lan, T.-H., Reischmann, K. P., et al. 1996. Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nat. Genet. 14:380382.CrossRefGoogle Scholar
Paul, S., Wachira, F. N., Powell, W., and Waugh, R. 1997. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 94:255263.CrossRefGoogle Scholar
Powell, W., Thomas, W.T.B., Baird, E., Lawrence, P., Booth, A., Harrower, B., McNicol, J. W., and Waugh, R. 1997. Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79:4859.CrossRefGoogle Scholar
Ransom, C. V., Douches, D. S., and Kells, J. J. 1998. Isozyme and RAPD variation among and within hemp dogbane (Apocynum cannabinum) populations. Weed Sci. 46:408413.CrossRefGoogle Scholar
Rounsley, S. and Briggs, S. 1999. The paradigm shift of genomics—a complement to traditional plant science. Curr. Opin. Plant Biol. 2:8182.CrossRefGoogle Scholar
Rouppe van der Voort, J.N.A.M., van Zandvoort, P., van Eck, H. J., et al. 1997. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol. Genet. 255:438447.CrossRefGoogle ScholarPubMed
Rowe, M. L., Lee, D. J., Nissen, S. J., Bowditch, B. M., and Masters, R. A. 1997. Genetic variation in North American leafy spurge (Euphorbia esula) determined by DNA markers. Weed Sci. 45:446454.CrossRefGoogle Scholar
Russell, J. R., Weber, J. C., Booth, A., Powell, W., Sotelo-Montes, C., and Dawson, I. K. 1999. Genetic variation of Calycophyllum spruceanum in the Peruvian Amazon Basin, revealed by amplified fragment length polymorphism (AFLP) analysis. Mol. Ecol. 8:199204.CrossRefGoogle Scholar
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487491.CrossRefGoogle ScholarPubMed
Sarma, R. N., Gill, B. S., Sasaki, T., Galiba, G., Sutka, J., Laurie, D. A., and Snape, J. W. 1998. Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor. Appl. Genet. 97:103109.CrossRefGoogle Scholar
Schaal, B. A., Hayworth, D. A., Olsen, K. M., Rauscher, J. T., and Smith, W. A. 1998. Phylogeographic studies in plants: problems and prospects. Mol. Ecol. 7:465474.CrossRefGoogle Scholar
Schierwater, B., Streit, B., Wagner, G. P., and DeSalle, R., eds. 1994. Molecular Ecology and Evolution: Approaches and Applications. Basel: Birkhauser-Verlag.CrossRefGoogle Scholar
Schmidt, R. 2000. Synteny: recent advances and future prospects. Curr. Opin. Plant Biol. 3:97102.CrossRefGoogle ScholarPubMed
Smithies, O. 1955. Zone electrophoresis in starch gels: group variation in the serum proteins of normal human adults. Biochem. J. 61:629641.CrossRefGoogle ScholarPubMed
Sterling, T. M. and Hou, Y. 1997. Genetic diversity of broom snakeweed (Gutierrezia sarothrae) and threadleaf snakeweed (G. microcephala). Weed Sci. 45:674680.Google Scholar
Tanksley, S. D., Bernatzky, R., Lapitan, N. L., and Prince, J. P. 1988. Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA 85:64196423.CrossRefGoogle Scholar
Tanksley, S. D., Ganal, M. W., Prince, J. P., et al. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132:11411160.CrossRefGoogle ScholarPubMed
Tanksley, S. D., Young, N. D., Paterson, A. H., and Bonierbale, M. W. 1989. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257264.Google Scholar
Tautz, D. 1989. Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Res. 17:64636471.CrossRefGoogle ScholarPubMed
Tikhonov, A. P., SanMiguel, P. J., Nakajima, Y., Gorenstein, N. M., Bennetzen, J. L., and Avramova, Z. 1999. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA 96:74097414.CrossRefGoogle ScholarPubMed
Van Der Hulst, R.G.M., Mes, T.H.M., Den Nijs, J.C.M., and Bachmann, K. 2000. Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol. Ecol. 9:18.CrossRefGoogle ScholarPubMed
Van Der Merwe, M., Winfield, M. O., Arnold, G. M., and Parker, J. S. 2000. Spatial and temporal aspects of the genetic structure of Juniperus communis populations. Mol. Ecol. 9:379386.CrossRefGoogle Scholar
Voorrips, R. E., Jongerius, M. C., and Kanne, H. J. 1997. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor. Appl. Genet. 94:7582.CrossRefGoogle Scholar
Vos, P., Hogers, R., Bleeker, M., et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:44074414.CrossRefGoogle ScholarPubMed
Warwick, S. I. 1987. Isozyme variation in proso millet. J. Hered. 78:210212.CrossRefGoogle Scholar
Warwick, S. I. 1990. Allozyme and life history variation in five northwardly colonizing North American weed species. Plant Syst. Ecol. 169:4154.Google Scholar
Warwick, S. I., Bain, J. F., Wheatcroft, R., and Thompson, B. K. 1989. Hybridization and introgression in Carduus nutans and C. acanthoides reexamined. Syst. Bot. 14:476494.CrossRefGoogle Scholar
Warwick, S. I. and Black, L. D. 1986a. Genecological variation in recently established populations of Abutilon theophrasti (velvetleaf). Can. J. Bot. 64:16321643.CrossRefGoogle Scholar
Warwick, S. I. and Black, L. D. 1986b. Electrophoretic variation in triazineresistant and susceptible populations of Amaranthus retroflexus L. New Phytol. 104:661670.CrossRefGoogle ScholarPubMed
Warwick, S. I. and Black, L. D. 1993. Electrophoretic variation in triazineresistant and -susceptible populations of the allogamous weed Brassica rapa . Weed Res. 33:105114.CrossRefGoogle Scholar
Warwick, S. I. and Marriage, P. B. 1982. Geographical variation in populations of Chenopodium album resistant and susceptible to atrazine. I. Between- and within-population variation in growth and response to atrazine. Can. J. Bot. 60:483493.Google Scholar
Warwick, S. I. and Thompson, B. K. 1989. The mating system in sympatric populations of Carduus nutans, C. acanthoides and their hybrid swarms. Heredity 63:329337.CrossRefGoogle Scholar
Warwick, S. I., Thompson, B. K., and Black, L. D. 1984. Population variation in Sorghum halepense, Johnson grass, at the northern limits of its range. Can. J. Bot. 62:17811790.CrossRefGoogle Scholar
Warwick, S. I., Thompson, B. K., and Black, L. D. 1987a. Life history and allozyme variation in populations of the weed species Setaria faberi . Can. J. Bot. 65:13961402.CrossRefGoogle Scholar
Warwick, S. I., Thompson, B. K., and Black, L. D. 1987b. Genetic variation in Canadian and European populations of the colonizing weed species Apera spica-venti . New Phytol. 106:301317.CrossRefGoogle Scholar
Williams, J.G.K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:65316535.CrossRefGoogle ScholarPubMed
Yu, L.-X. and Nguyen, H. T. 1994. Genetic variation detected with RAPD markers among upland and lowland rice cultivars (Oryza sativa L.). Theor. Appl. Genet. 87:668672.CrossRefGoogle ScholarPubMed
Zhang, H., Jia, J., Gale, M. D., and Devos, K. M. 1998. Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor. Appl. Genet. 96:6975.CrossRefGoogle Scholar