Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T06:19:21.868Z Has data issue: false hasContentIssue false

Protox-resistant common waterhemp (Amaranthus rudis) response to herbicides applied at different growth stages

Published online by Cambridge University Press:  20 January 2017

Jeanne S. Falk
Affiliation:
Kansas State University Northwest Area Extension Office, 105 Experiment Farm Road, Colby, KS 67701-0786
Douglas E. Shoup
Affiliation:
Department of Agronomy, 3706 Throckmorton Hall, Kansas State University, Manhattan, KS 66506
Dallas E. Peterson
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506

Abstract

Greenhouse and field studies were conducted with a population of common waterhemp resistant to POST protoporphyrinogen oxidase (protox)-inhibiting herbicides to compare its response to PRE and POST applications of selected herbicides. In the greenhouse, a dose–response study of PRE applications of acifluorfen, fomesafen, or lactofen was conducted on protox-susceptible and -resistant common waterhemp. The protox-resistant biotype was approximately 6.3, 2.5, and 2.6 times more resistant than the susceptible biotype to acifluorfen, fomesafen, and lactofen, respectively. In a separate study under field conditions, protox-resistant common waterhemp were treated with PRE and POST applications of acifluorfen, azafenidin, flumioxazin, fomesafen, lactofen, oxyfluorfen, or sulfentrazone. At 14 and 28 d after POST treatment (DAPT) in 2002 and 2004, all PRE applications of herbicides gave greater control than did POST applications. At 14 DAPT, oxyfluorfen had the greatest difference in PRE and POST control, with 85 and 10% control in 2002, respectively. An additional field study was conducted to determine the stage of growth at which resistance to protox-inhibiting herbicides becomes most prevalent. Protox-resistant common waterhemp were treated with herbicides at the 2-leaf, 4- to 6-leaf, and 8- to 10-leaf growth stage. Acifluorfen and fomesafen at 420 g ha−1 gave greater than 90% control at the 2-leaf stage and 4- to 6-leaf stage, except in 2003 when control was 85% with acifluorfen. In 2003 and 2004, common waterhemp control at the 8- to 10-leaf stage ranged between 54 and 75% with acifluorfen or fomesafen. Results indicate that common waterhemp resistance to customary rates of POST protox-inhibiting herbicides becomes prevalent after the 4- to 6-leaf growth stage.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amsellem, Z., Jansen, M. A. K., Driesenaar, A. R. J., and Gressel, J. 1993. Developmental variability of photooxidative stress tolerance in paraquat-resistant Conyza . Plant Physiol 103:10971106.CrossRefGoogle ScholarPubMed
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol 10:570575.CrossRefGoogle Scholar
Anderson, W. P. 1996. Weed Science: Principles and Applications. 3rd ed. St. Paul, MN: West Publishing. Pp. 108124.Google Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. E. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743.Google Scholar
Feltner, K. C., Hurst, H. R., and Anderson, L. E. 1969. Tall waterhemp competition in grain sorghum. Weed Sci 17:214216.Google Scholar
Hartzler, R. G., Battles, B. A., and Nordby, D. 2004. Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci 52:242245.Google Scholar
Hartzler, R. G., Buhler, D. D., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci 47:578584.Google Scholar
Hassan, G., Mueller-Warrant, G., and Griffith, S. 2002. Differential sensitivity of Italian ryegrass (Lolium multiflorum) cultivars to fenoxaprop. Weed Sci 50:567575.Google Scholar
Heap, I. M. 2004. International Survey of Herbicide-Resistant Weeds. www.weedscience.com.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci 48:347355.Google Scholar
Lee, S. D. and Oliver, L. R. 1982. Efficacy of acifluorfen on broadleaf weeds. Times and methods for application. Weed Sci 30:520526.Google Scholar
Li, J., Smeda, R. J., Nelson, K. A., and Dayan, F. E. 2004. Physiological basis for resistance to diphenyl ether herbicides in common waterhemp (Amaranthus rudis). Weed Sci 52:333338.Google Scholar
Mager, H. J., Young, B. G., and Al-Khatib, K. 2002. Management of common waterhemp resistant to protoporphyrinogen oxidase-inhibiting herbicides in soybean. Champaign, IL: North Central Weed Science Society. [Abstract 70, CD ROM].Google Scholar
Massinga, R. A., Al-Khatib, K., St. Amand, P., and Miller, J. F. 2003. Gene flow from imidazolinone-resistant domesticated sunflower to wild relatives. Weed Sci 51:854862.Google Scholar
Matsumoto, H., Lee, J. J., and Ishizuka, K. 1994. Variation in crop response to protoporphyrinogen oxidase inhibitors. Pages 120132 in Duke, S. O. and Rebeiz, C. A. eds. Porphyric Pesticides: Chemistry, Toxicology, and Pharmaceutical Applications. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Patzoldt, W. L., Hager, A. G., and Tranel, P. J. 2003. Molecular characterization of the gene encoding protoporphyrinogen oxidase from waterhemp. Proc. N. Cent. Weed Sci. Soc 58:30.Google Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci 53:3036.Google Scholar
Sauer, J. D. 1957. Recent migration and evolution of the dioecious amaranths. Evolution 11:1131.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218227.Google Scholar
Sherman, T. D., Becerril, J. M., Matsumoto, H., Duke, M. V., Jacobs, J. M., Jacobs, N. J., and Duke, S. O. 1991. Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidase-inhibiting herbicides. Plant Physiol 97:280287.Google Scholar
Shoup, D. E. and Al-Khatib, K. 2004. Control of protoporphyrinogen oxidase inhibitor-resistant common waterhemp (Amaranthus rudis) in corn and soybean. Weed Technol 18:332340.Google Scholar
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 51:145150.Google Scholar
Steckel, L. E. and Sprague, C. L. 2004. Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci 52:359364.Google Scholar
Vasilakoglou, I. B., Eleftherohorinos, I. G., and Dhima, K. V. 2000. Propanil-resistant barnyardgrass (Echinochloa crus-galli) biotypes found in Greece. Weed Technol 14:524529.CrossRefGoogle Scholar
Vencill, W. K. 2002. Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. pp. 477.Google Scholar
Zawierucha, J. E. and Penner, D. 2001. The relationship of goosegrass (Eleusine indica) stage of growth to quinclorac tolerance. Weed Technol 15:216219.Google Scholar