Skip to main content
    • Aa
    • Aa

Resistance of weeds to ALS-inhibiting herbicides: what have we learned?

  • Patrick J. Tranel and Terry R. Wright (a1)

Herbicides that target the enzyme acetolactate synthase (ALS) are among the most widely used in the world. Unfortunately, these herbicides are also notorious for their ability to select resistant (R) weed populations. Now, there are more weed species that are resistant to ALS-inhibiting herbicides than to any other herbicide group. In most cases, resistance to ALS-inhibiting herbicides is caused by an altered ALS enzyme. The frequent occurrence of weed populations resistant to ALS inhibitors can be attributed to the widespread usage of these herbicides, how they have been used, the strong selection pressure they exert, and the resistance mechanism. In several cropping systems, ALS-inhibiting herbicides were used repeatedly as the primary mechanism of weed control. These herbicides exert strong selection pressure because of their high activity on sensitive biotypes at the rates used and because of their soil residual activity. Several point mutations within the gene encoding ALS can result in a herbicide-resistant ALS. From investigations of numerous R weed biotypes, five conserved amino acids have been identified in ALS that, on substitution, can confer resistance to ALS inhibitors. Substitutions of at least 12 additional ALS amino acids can also confer herbicide resistance in plants and other organisms but, to date, have not been found in R weed populations. Mutations in ALS conferring herbicide resistance are at least partially dominant, and because the gene is nuclear inherited, it is transmitted by both seed and pollen. Furthermore, in many cases there is apparently a negligible fitness cost of the resistance gene in the absence of herbicide selection. Although resistance to ALS-inhibiting herbicides has been a bane to weed management, it has spurred many advances within and beyond the weed science discipline. As examples, resistance to ALS-inhibiting herbicides has been exploited in the development of herbicide-resistant crops, studies of weed population dynamics, and in developing protocols for targeted gene modification. Resistance to ALS-inhibiting herbicides has greatly affected weed science by influencing how we view the sustainability of our weed management practices, what we consider when developing and marketing new herbicides, and how we train new weed scientists.

Corresponding author
Corresponding author. Department of Crop Sciences, University of Illinois, Urbana, IL 61801;
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

T. Akagi 1996. A new binding model for structurally diverse ALS inhibitors. Pestic. Sci. 47:309318.

P. Babczinski and T. Zelinski 1991. Mode of action of herbicidal ALS-inhibitors on acetolactate synthase from green plant cell cultures, yeast, and Escherichia coli . Pestic. Sci. 31:305323.

P. R. Beetham , P. B. Kipp , X. L. Sawycky , C. J. Arntzen , and G. D. May 1999. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Natl. Acad. Sci. USA 96:87748778.

J. Bergelson , C. B. Purrington , C. J. Palm , and J. López-Gutiérrez 1996. Costs of resistance: a test using transgenic Arabidopsis thaliana . Proc. R. Soc. Lond. Ser. B Biol. Sci. 263:16591663.

P. Bernasconi , A. R. Woodworth , B. A. Rosen , M. V. Subramanian , and D. L. Siehl 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:17 38117 385.

R. E. Blackshaw , D. Kanashiro , M. M. Moloney , and W. L. Crosby 1994. Growth, yield and quality of canola expressing resistance to acetolactate synthase inhibiting herbicides. Can. J. Plant Sci. 74:745751.

P. Boutsalis , J. Karotam , and S. B. Powles 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pestic. Sci. 55:507516.

J. E. Brandle and B. L. Miki 1993. Agronomic performance of sulfonylurea-resistant transgenic flue-cured tobacco grown under field conditions. Crop Sci. 33:847852.

Y. Y. Chang and J. E. Cronan 1988. Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. J. Bacteriol. 170:39373945.

D. Chipman , Z. Barak , and J. V. Schloss 1998. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim. Biophys. Acta 1385:401419.

J. T. Christopher , S. B. Powles , D. R. Liljegren , and J.A.M. Holtum 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). Plant Physiol. 95:10361043.

S. J. Clough , and A. F. Bent 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J. 16:735743.

J. C. Cotterman and L. L. Saari 1992. Rapid metabolic inactivation is the basis for cross-resistance to chlorsulfuron in diclofop-methyl-resistant rigid ryegrass (Lolium rigidum) biotype SR4/84. Pestic. Biochem. Physiol. 43:182192.

M. D. Devine , M.A.S. Marles , and L. M. Hall 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31:273280.

K. M. D’Halluin , M. Bossut , E. Bonne , B. Mazur , J. Leemans , and J. Botterman 1992. Transformation of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Bio/Technology 10:309314.

R. G. Duggleby 1997. Identification of an acetolactate synthase small subunit gene in two eukaryotes. Gene 190:245249.

R. P. Funke , J. L. Kovar , J. M. Logsdon Jr., J. C. Corrette-Bennett , D. R. Straus , and D. P. Weeks 1999. Nucleus-encoded, plastid-targeted acetolactate synthase genes in two closely related chlorophytes, Chlamydomonas reinhardtii and Volvox carteri: phylogenetic origins and recent insertion of introns. Mol. Gen. Genet. 262:1221.

B. C. Gerwick , M. V. Subramanian , and V. I. Loney-Gallant 1990. Mechanism of action of the 1,2,4-triazolo[1,5-a]pyrimidines. Pestic. Sci. 29:357364.

M. J. Guttieri , C. V. Eberlein , C. A. Mallory-Smith , and D. C. Thill 1996. Molecular genetics of target-site resistance to acetolactate synthase inhibiting herbicides. Pages 1016 In T. M. Brown , ed. Molecular Genetics and Evolution of Pesticide Resistance. Washington, DC: American Chemical Society.

L. M. Hall and M. D. Devine 1990. Cross resistance of a chlorsulfuron-resistant biotype of Stellaria media to a triazolopyrimidine herbicide. Plant Physiol. 93:962966.

C. T. Harms , S. L. Armour , J. J. DiMaio , et al. 1992. Herbicide resistance due to amplification of a mutant acetohydroxyacid synthase gene. Mol. Gen. Genet. 233:427435.

G. W. Haughn , J. Smith , B. Mazur , and C. Somerville 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211:266271.

I. Heap and R. Knight 1986. The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl. Aust. J. Agric. Res. 37:149156.

H. P. Hershey , L. J. Schwartz , J. P. Gale , and L. M. Abell 1999. Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia . Plant Mol. Biol. 40:795806.

C. M. Hill and R. G. Duggleby 1998. Mutagenesis of Escherichia coli acetohydroxyacid synthase isoenzyme II and characterization of three herbicide-insensitive forms. Biochem. J. 335:653661.

M. Ibdah , A. Bar-Ilan , O. Livnah , J. V. Schloss , Z. Barak , and D. M. Chipman 1996. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16 28216 291.

M. S. Kemp , S. R. Moss , and T. H. Thomas 1990. Herbicide resistance in Alopecurus myosuroides . Pages 376393 In M. B. Green , H. M. LeBaron , and W. K. Moberg , eds. Managing Resistance to Agrochemicals. From Fundamental Research to Practical Strategies. Washington, DC: American Chemical Society.

G. M. Kishore and D. M. Shaw 1988. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57:627663.

J. L. Kovar , J. Zhang , R. P. Funke , and D. P. Weeks 2002. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J. 29:109117.

Z. Li , A. Hayashimoto , and N. Murai 1992. A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol. 100:662668.

B. J. Mazur and S. C. Falco 1989. The development of herbicide resistant crops. Annu. Rev. Plant Physiol. Mol. Biol. 40:441470.

A. McHughen 1989. Agrobacterium mediated transfer of chlorsulfuron resistance to commercial flax cultivars. Plant Cell Rep. 8:445449.

A. McHughen and F. Holm 1991. Herbicide-resistant transgenic flax field test: agronomic performance in normal and sulfonylurea-containing soils. Euphytica 55:4956.

L. W. Mengistu , G. W. Mueller-Warrant , A. I. Liston , and R. E. Barker 2000. psbA mutation (valine219 to isoleucine) in Poa annua resistant to metribuzin and diuron. Pest Manage. Sci. 56:209217.

Y. A. Muller and G. E. Schulz 1993. Structure of the thiamine- and flavin-dependent enzyme pyruvate oxidase. Science 259:965967.

K. E. Newhouse , W. A. Smith , M. A. Starrett , T. J. Schaefer , and B. K. Singh 1992. Tolerance to imidazolinone herbicides in wheat. Plant Physiol. 100:882886.

K. J. Oh , E. J. Park , M. Y. Yoon , T. R. Han , and J. D. Choi 2001. Roles of histidine residues in tobacco acetolactate synthase. Biochem. Biophys. Res. Commun. 282:12371243.

K. H. Ott , J. G. Kwagh , G. W. Stockton , V. Sidirov , and G. Kakefuda 1996. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J. Mol. Biol. 263:359368.

S. S. Pang , R. G. Duggleby , and L. W. Guddat 2002. Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J. Mol. Biol. 317:249262.

W. L. Patzoldt and P. J. Tranel 2002. Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Sci. 50:299305.

W. L. Patzoldt , P. J. Tranel , A. L. Alexander , and P. R. Schmitzer 2001. A common ragweed population resistant to cloransulam-methyl. Weed Sci. 49:485490.

W. L. Patzoldt , P. J. Tranel , and A. G. Hager 2002. Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Prot. In press.

C. Preston and S. B. Powles 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum . Heredity 88:813.

T. B. Ray 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827831.

L. L. Saari , J. C. Cotterman , W. F. Smith , and M. M. Primiani 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42:110118.

K. Sathasivan , G. W. Haughn , and N. Murai 1990. Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res. 18:2188.

K. Sathasivan , G. W. Haughn , and N. Murai 1991. Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var. Columbia. Plant Physiol. 97:10441050.

J. V. Schloss 1990. Acetolactate synthase, mechanism of action and its herbicide binding site. Pestic. Sci. 29:283290.

J. V. Schloss , L. M. Ciskanik , and D. E. Van Dyk 1988. Origin of the herbicide binding site of acetolactate synthase. Nature 331:360362.

P. R. Schmitzer , R. J. Eilers , and C. Cséke 1993. Lack of cross-resistance of imazaquin-resistant Xanthium strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiol. 103:281283.

S. A. Sebastian , G. M. Fader , J. F. Ulrich , D. R. Forney , and R. S. Chaleff 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29:14031408.

D. L. Shaner , P. C. Anderson , and M. A. Stidham 1984. Imidazolinones: potential inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.

M. Sibony , A. Michel , H. U. Haas , B. Rubin , and K. Hurle 2001. Sulfometuron-resistant Amaranthus retroflexus: cross-resistance and molecular basis for resistance to acetolactate synthase-inhibiting herbicides. Weed Res. 41:509522.

V. Souza-Machado , J. D. Bandeen , G. R. Stephenson , and P. Lavigne 1978. Uniparental inheritance of chloroplast atrazine tolerance in Brassica campestris . Can. J. Plant Sci. 58:977981.

E. B. Swanson , M. J. Herrgesell , M. Arnoldo , D. W. Sippell , and R.S.C. Wong 1989. Microspore mutagenesis and selection: canola plants with field tolerance to the imidazolinones. Theor. Appl. Genet. 78:525530.

H. E. Umbarger 1978. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 47:533606.

T. R. Wright and D. Penner 1998b. Cell selection and inheritance of imidazolinone resistance in sugarbeet (Beta vulgaris). Theor. Appl. Genet. 96:612620.

N. Yadev , R. E. McDevitt , S. Benard , and S. C. Falco 1986. Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc. Natl. Acad. Sci. U.S.A 83:44184422.

L. Zeng and W. V. Baird 1997. Genetic basis of dinitroaniline herbicide resistance in a highly resistant biotype of goosegrass (Eleusine indica). J. Hered. 88:427432.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 114 *
Loading metrics...

* Views captured on Cambridge Core between 20th January 2017 - 28th May 2017. This data will be updated every 24 hours.