Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T05:35:07.465Z Has data issue: false hasContentIssue false

Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe

Published online by Cambridge University Press:  20 January 2017

María Dolores Osuna
Affiliation:
Departamento de Química Agrícola y Edafología, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, N IV, Km. 396, 14071 Cordoba, Spain
Albert J. Fischer
Affiliation:
Vegetable Crops Department, University of California, Davis, CA 95616

Abstract

A biotype of green foxtail found in Spain exhibited cross-resistance among acetyl-CoA carboxylase (ACCase)–inhibiting herbicides. Field doses that totally inhibited shoot fresh weight in the susceptible (S) biotype were determined for six aryloxyphenoxypropionates (clodinafop, diclofop, fenoxaprop-P, fluazifop-P, haloxyfop-P, and propaquizafop) and six cyclohexanediones (clefoxydim, clethodim, cycloxydim, sethoxydim, tepraloxydim, and tralkoxydim). The resistant (R) biotype showed cross-resistance to all herbicides except fenoxaprop-P, propaquizafop, clefoxydim, and tepraloxydim. There were no differences in the absorption, translocation, and metabolism of [14C]diclofop between the S and R biotypes. On the basis of herbicide dose that inhibited ACCase activity by 50% (I50 values), ACCase of the R biotype was 5.8-, 13.9-, 20.0-, 102.4-, 416.7-, and 625.0-fold less sensitive to clethodim, haloxyfop, diclofop, fluazifop, cycloxydim, and sethoxydim, respectively, than that of the S biotype. Two multifunctional ACCase isoforms (ACCase I and ACCase II) were purified partially and separated. ACCase II was highly resistant to diclofop acid in both biotypes, with I50 values ranging between 92 and 95 μM. However, the I50 values observed for ACCase I revealed that the R biotype was 30.8-fold less sensitive to diclofop than the S biotype. These results suggest the mechanism of resistance in green foxtail to diclofop relates to an altered ACCase I isoform.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem 72:248254.Google Scholar
Bradley, K. W., Wu, J., Hatzios, K. K., and Hagood, E. S. 2001. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a johnsongrass biotype. Weed Sci 49:477484.Google Scholar
Brown, A. C., Moss, S. R., Wilson, Z. A., and Field, L. M. 2002. An isoleucine to leucine substitution in the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance to the herbicide sethoxydim. Pestic. Biochem. Physiol 72:160168.Google Scholar
Burnet, M. W. M., Loveys, B. R., Holtum, J. A. M., and Powles, S. B. 1993. Increased detoxification is a mechanism of simazine resistance in Lolium rigidum . Pestic. Biochem. Physiol 46:207215.Google Scholar
Christoffers, M. J. and Messersmith, C. G. 1999. Molecular analysis of acetyl-CoA carboxylase genes from herbicide-resistant and susceptible wild oats. Proc. N. Weed Sci. Soc 54:113.Google Scholar
Ciarka, D., Osuna, M. D., and De Prado, R. 1999. Cross-resistance to ACCase inhibitor herbicides in Setaria viridis biotypes. 11th EWRS Symposium, Basel, Switzerland: European Weed Research Society.Google Scholar
De Prado, J. L., Osuna, M. D., Shimabukuro, R. H., and De Prado, R. 1998. Biochemical and physiological resistance mechanisms to diclofop-methyl in Lolium rigidum . Proceedings of the 50th International Symposium on Crop Protection 63:681689.Google Scholar
De Prado, R., De Prado, J. L., Osuna, M. D., Taberner, A., and Heredia, A. 2001. Is diclofop-methyl resistance in Lolium rigidum associated with a lack of penetration? Proc. Crop Prot. Conf. Weeds 8A:545550.Google Scholar
De Prado, R., Gonzalez-Gutierrez, J., Menéndez, J., Gasquez, J., and Gronwald, J. W. 2000a. Resistance to acetyl CoA carboxylase-inhibiting herbicides in Lolium multiflorum . Weed Sci 48:311318.Google Scholar
De Prado, R., Lopez-Martinez, N., and Gimenez-Espinosa, R. 1997. Herbicide-resistant weeds in Europe: Agricultural, physiological and biochemical aspects. Pages 1727 in De Prado, R., Garcia-Torres, L., and Jorrin, J. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
De Prado, R., Lopez-Martinez, N., and Gonzalez-Gutierrez, J. 2000b. Identification of two mechanisms of atrazine resistance in Setaria faberi and Setaria viridis biotypes. Pestic. Biochem. Physiol 67:114124.Google Scholar
De Prado, R. and Rodriguez-Franco, A. 2004. Cross-resistance and herbicide metabolism in grass weeds in Europe: biochemical and physiological aspects. Weed Sci 51:441447.CrossRefGoogle Scholar
Délye, C., Wang, T., and Darmency, H. 2002. An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta 214:421427.Google Scholar
Edwards, R. 1997. Glutathione transferases and herbicide metabolism and selectivity. Pages 109115 in De Prado, R., Garcia-Torres, L., and Jorrin, J. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
Egli, M. A., Gengenbach, B. G., Gronwald, J. W., Somers, D. A., and Wise, D. L. 1993. Characterization of maize acetyl-Coenzyme A. Plant Physiol 101:499506.CrossRefGoogle ScholarPubMed
Evenson, K. J., Gronwald, J. W., and Wyse, D. L. 1997. Isoforms of acetyl-coenzyme A carboxylase in Lolium multiflorum . Plant Physiol. Biochem 35:265273.Google Scholar
Gimenez-Espinosa, R., Plaisance, K. L., Plank, D. W., Gronwald, J. W., and De Prado, R. 1999. Propaquizafop absorption, translocation, metabolism, and effect on acetyl-CoA carboxylase isoforms in chickpea (Cicer arietinum L). Pestic. Biochem. Physiol 65:140150.Google Scholar
Gimenez-Espinosa, R., Romera, E., Tena, M., and De Prado, R. 1996. Fate of atrazine in treated and pristine accessions of three Setaria species. Pestic. Biochem. Physiol 56:196207.Google Scholar
Gronwald, J. W. 1994. Herbicides inhibiting acetyl-CoA carboxylase. Biochem. Soc. Trans 22:616621.Google Scholar
Gronwald, J. W., Eberlein, C. V., Betts, K. J., Bareg, R. J., Ehlke, N. J., and Wyse, D. L. 1992. Mechanism of diclofop resistance in an Italian ryegrass (Lolium multiflorum Lam.) biotype. Pestic. Biochem. Physiol 44:126139.Google Scholar
Heap, I. M. 2003. International Survey of Herbicide-Resistant Weeds. Herbicide Resistance Action Committee and Weed Science Society of America. http://www.weedscience.com.Google Scholar
Heap, I. M. and Morrison, I. N. 1996. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in green foxtail (Setaria viridis). Weed Sci 44:2530.Google Scholar
Holtum, J. A. M., Mattews, J. M., Hausler, R. E., Liljegren, D. R., and Powles, S. B. 1991. Cross resistance to herbicides in annual ryegrass (Lolium rigidum). III. On the mechanism of resistance to diclofop-methyl. Plant Physiol 97:10261034.Google Scholar
Konishi, T. and Sasaki, Y. 1994. Compartimentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc. Natl Acad. Sci. U.S.A 91:35983603.Google Scholar
Leach, G. E., Devine, M. D., Kirkwood, R. C., and Marshall, G. 1995. Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica . Pestic. Biochem. Physiol 51:129136.Google Scholar
Marles, M. A. S., Devine, M. D., and Hall, J. C. 1993. Herbicide resistance in Setaria viridis conferred by a less sensitive form of acetyl-coenzyme A carboxylase. Pestic. Biochem. Physiol 36:300307.Google Scholar
Menéndez, J. and De Prado, R. 1996. Diclofop-methyl cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides . Pestic. Biochem. Physiol 56:123133.Google Scholar
Menéndez, J. and De Prado, R. 1999. Characterization of two acetyl-CoA carboxylase isoforms in diclofop-methyl-resistant and susceptible biotypes of Alopecurus myosuroides . Pestic. Biochem. Physiol 65:8289.CrossRefGoogle Scholar
Morrison, I. N. and Devine, M. D. 1994. Herbicide resistance in the Canadian prairie provinces: five years after the fact. Phytoprotection 75:516.Google Scholar
Owen, M. D. K. 2001. World maize/soybean and herbicide resistance. Pages 101163 in Powles, S. B. and Shaner, D. L. eds. Weed and Crop Resistance to Herbicides. Boca Raton, FL: CRC.Google Scholar
Parker, W. B., Somers, D. L., Wyse, D. L., Keith, R. A., Gronwald, J. W., and Gengenbach, B. G. 1990. Selection and characterization of sethoxydim-tolerant maize cell cultures. Plant Physiol 92:12201225.Google Scholar
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanism, inheritance, and molecular genetics of herbicide resistance in weeds. Pages 2360 in Powles, S. B. and Shaner, D. L. eds. Herbicide Resistance and World Grains. Boca Raton, FL: CRC.Google Scholar
Shaner, D. L. 1997. Herbicide resistance in North America: History, circumstances of development and current situation. Pages 1727 in De Prado, R., Garcia-Torres, L., and Jorrin, J. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
Sherman, T. D., Vaughn, K. C., and Duke, S. O. 1996. Mechanisms of action and resistance to herbicides. Pages 1435 in Duke, S. O. eds. Herbicide Resistant Crops. Boca Raton, FL: CRC.Google Scholar
Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem 27:615623.Google Scholar
Shorrosh, B. S., Roesler, K. R., Shintani, D., van de Loo, F. J., and Ohlrogge, J. B. 1995. Structural analysis, plastid localization and expression of the biotin carboxylase from tobacco. Plant Physiol 108:805812.Google Scholar
Shukla, A., Leach, G. E., and Devine, M. D. 1997. High-level resistance to sethoxydim conferred by an alteration in the target enzyme, acetyl-Co A carboxylase, in Setaria faberi and Setaria viridis . Plant Physiol. Biochem 35:803807.Google Scholar
Tardif, F. J., Preston, C., Holtum, J. A. M., and Powles, S. B. 1996. Resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides endowed by a single major gene encoding a resistant target site in a biotype of Lolium rigidum . Aust. J. Plant Physiol 23:1523.Google Scholar
Volenberg, D. and Stoltenberg, D. 2002. Altered acetyl-Co A carboxylase confers resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis . Weed Res 42:342350.CrossRefGoogle Scholar
Zagnitko, O., Jelenska, J., Tevzadze, G., Haselkorn, R., and Gornicki, P. 2001. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanodione inhibitors. Proc. Natl Acad. Sci. USA 98:66176622.Google Scholar
Zhang, X. and Devine, M. D. 2000. A point mutation in the plastidic ACCase gene conferring resistance to sethoxydim in green foxtail (Setaria viridis). Weed Sci. Soc. Am. Abstr 40:81.Google Scholar