Skip to main content
×
Home
    • Aa
    • Aa

Sampling the Waterhemp (Amaranthus tuberculatus) Genome Using Pyrosequencing Technology

  • Ryan M. Lee (a1), Jyothi Thimmapuram (a2), Kate A. Thinglum (a1), George Gong (a2), Alvaro G. Hernandez (a2), Chris L. Wright (a2), Ryan W. Kim (a2), Mark A. Mikel (a3) and Patrick J. Tranel (a1)...
Abstract

Recent advances in sequencing technologies (next-generation sequencing) offer dramatically increased sequencing throughput at a lower cost than traditional Sanger sequencing. This technology is changing genomics research by allowing large scale sequencing experiments in nonmodel systems. Waterhemp is an important weed in the midwestern United States with characteristics that makes it an interesting ecological model. However, very few genomic resources are available for this species. One half of a 70 by 75 picotiter plate of 454-pyrosequencing was performed on total DNA isolated from waterhemp, generating 158,015 reads of an average length of 271 bp, or a total of nearly 43 Mbp of sequence. Included in this sequence was a nearly complete sequence of the chloroplast genome, sequences of several important herbicide resistance genes, leads for simple sequence repeat (SSR) markers, and a sampling of the repeated elements (e.g., transposons) present in this species. Here we present the waterhemp genomic data gleaned from this sequencing experiment and illustrate the value of next-generation sequencing technology to weed science research.

Copyright
Corresponding author
Corresponding author's E-mail: tranel@illinois.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. F. Altschul , W. Gish , W. Miller , E. W. Myers , and D. J. Lipman 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.

Arabidopsis Genome Initiative 2000. Analysis of the genome of the flowering plant Arabidopsis thaliana . Nature. 408:796815.

J. L. Bennetzen 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42:251269.

D. J. Finnegan 1992. Transposable elements. Curr. Opin. Genet. Dev. 2:861867.

A. G. Hager , L. M. Wax , E. W. Stoller , and G. A. Bollero 2002. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50:607610.

T. Kubo , S. Nishizawa , A. Sugawara , N. Itchoda , A. Estiati , and T. Mikami 2000. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res. 28:25712576.

J. R. Lee , G. Y. Hong , A. Dixit , et al. 2008. Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplifications in wild species. Conserv. Genet. 9:243246.

T. R. Legleiter and K. W. Bradley 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56:582587.

A. Lomsadze , V. Ter-Hovhannisyan , Y. O. Chernoff , and M. Borodovsky 2005. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33:64946506.

D. M. Lonsdale , T. P. Hodge , C. J. Howe , and D. B. Stern 1983. Maize mitochondrial DNA contains a sequence homologous to the ribulose-1,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell. 34:10071014.

M. A. Mallory , R. V. Hall , A. R. McNabb , D. B. Pratt , E. N. Jellen , and P. J. Maughan 2008. Development and characterization of microsatellite markers for the grain amaranths. Crop Sci. 48:10981106.

C. A. Mallory-Smith and E. J. Retzinger Jr. 2003. Revised classification of herbicides by sites of action for weed resistance management strategies. Weed Technol. 17:605619.

P. J. Maughan , N. Sisneros , M. Luo , D. Kudrna , J. S. S. Ammiraju , and R. A. Wing 2008. Construction of an Amaranthus hypochondriacus bacterial artificial chromosome library and genomic sequencing of herbicide target genes. Crop Sci. 48:S85S94.

B. McClintock 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16:1347.

B. McClintock 1984. The significance of responses of the genome to challenge. Science. 226:792801.

Y. Notsu , S. Masood , T. Nishikawa , N. Kubo , G. Akiduki , M. Nakazono , A. Hirai , and K. Kadowaki 2002. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics. 268:434445.

J. D. Palmer , K. L. Adams , Y. Cho , C. L. Parkinson , Y. L. Qiu , and K. Song 2000. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc. Natl. Acad. Sci. USA. 97:69606966.

W. L. Patzoldt , A. G. Hager , J. S. McCormick , and P. J. Tranel 2006. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. USA. 103:1232912334.

A. L. Rayburn , R. McCloskey , T. C. Tatum , G. A. Bollero , M. R. Jeschke , and P. J. Tranel 2005. Genome size analysis of weedy Amaranthus species. Crop Sci. 45:25572562.

S. Rounsley , P. R. Marri , Y. Yu , et al. 2009. De novo next generation sequencing of plant genomes. Rice. 2:3543.

F. Sanger , G. M. Air , B. G. Barrell , N. L. Brown , A. R. Coulson , C. A. Fiddes , C. A. Hutchison , P. M. Slocombe , and M. Smith 1977. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 265:687695.

P. SanMiguel , A. Tikhonov , Y. K. Jin , et al. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science. 274:765768.

C. Schmitz-Linneweber , R. M. Maier , J. P. Alcaraz , A. Cottet , R. G. Herrmann , and R. Mache 2001. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol. Biol. 45:307315.

M. Sugiura 2003. History of chloroplast genomics. Photosynth. Res. 76:371377.

K. Turcotte , S. Srinivasan , and T. Bureau 2001. Survey of transposable elements from rice genomic sequences. Plant J. 25:169179.

M. Unseld , J. R. Marienfeld , P. Brandt , and A. Brennicke 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 15:5761.

J. C. Vera , C. W. Wheat , H. W. Fescemyer , M. J. Frilander , D. L. Crawford , I. Hanski , and J. H. Marden 2008. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol. Ecol. 17:16361647.

C. Vitte and J. L. Bennetzen 2006. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc. Natl. Acad. Sci. USA. 103:1763817643.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 36 *
Loading metrics...

* Views captured on Cambridge Core between 20th January 2017 - 22nd May 2017. This data will be updated every 24 hours.