Skip to main content Accessibility help

Tillage, Cropping System, and Soil Depth Effects on Common Waterhemp (Amaranthus rudis) Seed-Bank Persistence

  • Lawrence E. Steckel (a1), Christy L. Sprague (a2), Edward W. Stoller (a3), Loyd M. Wax (a3) and F. William Simmons (a4)...


A field experiment was conducted in Urbana, IL, from 1997 to 2000 to evaluate the effect that crop, tillage, and soil depth have on common waterhemp seed-bank persistence. A heavy field infestation of common waterhemp (approximately 410 plants m−2) was allowed to set seed in 1996 and was not allowed to go to seed after 1996. In 1997, 1998, 1999, and 2000, the percentage of the original common waterhemp seed bank that remained was 39, 28, 10, and 0.004%, respectively, averaged over tillage treatments. Initially, germination and emergence of common waterhemp was greater in no-till systems. Consequently, the number of remaining seeds was greater in the till treatments compared with no-till in the top 0 to 6 cm of the soil profile. This reduction was in part explained by the higher germination and emergence of common waterhemp in the no-tillage treatments. Tillage increased the seed-bank persistence of common waterhemp in the top 0 to 2 cm of the soil profile in 1997 and the top 0 to 6 cm in 1998. Crop had no effect on common waterhemp emergence or seed-bank persistence. In 2001, > 10% of the seed germinated that was buried 6 to 20 cm deep compared with 3% for seed 0 to 2 cm deep.


Corresponding author

Corresponding author's E-mail:


Hide All
Alm, E. M., Stoller, E. W., and Wax, L. M. 1993. An index model for predicting seed germination and emergence rates. Weed Technol. 7:560569.
Ballare, C. L., Scopel, A. L., Ghersa, C. M., and Sanchez, R. A. 1988. The fate of Datura ferox seeds in the soil as affected by cultivation, depth of burial and degree of maturity. J. Appl. Biol. 112:337345.
Baskin, J. M. and Baskin, C. C. 1989. Physiology of dormancy and germination in relation to seed bank ecology. Pages 5365. in Leck, M., Parker, V., Simpson, R. eds. Ecology of Soil Seed Banks. San Diego, CA Academic.
Buhler, D. D. 1992. Population dynamics and control of annual weeds in corn (Zea mays) as influenced by tillage systems. Weed Sci. 40:241248.
Cardina, J., Herms, C. P., and Doohan, D. J. 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 50:448460.
Carmona, D. M., Menalled, F. D., and Landis, D. A. 1999. Gryllus pennsylvanicus (Orthoptera: Gryllidae): laboratory weed seed predation and within field activity-density. Entomol. Soc. Am. 92:825829.
Egley, G. H. and Williams, R. D. 1990. Decline of weed seeds and seedling emergence over five years as affected by soil disturbances. Weed Sci. 38:504510.
Fenner, M. 1994. Ecology of seed banks. Pages 507528. in Kiegle, J., Galili, G. eds. Seed development and germination. New York Marcel Dekker.
Gallagher, R. S. and Cardina, J. 1998a. Phytochrome-mediated Amaranthus germination I: effect of seed burial and germination temperature. Weed Sci. 46:4852.
Gallagher, R. S. and Cardina, J. 1998b. Phytochrome-mediated Amaranthus germination II: development of very low fluence sensitivity. Weed Sci. 46:5358.
Gashwiler, J. S. 1967. Conifer seed survival in western Oregon clearcut. Ecology. 48:431433.
Ghersa, C. 1997. Fate of seed in soil. Pages 136. in Radosevich, S., Holt, J., Ghersa, C. eds. Weed Ecology, Implications for Management, 2nd ed. New York John Wiley and Sons.
Gutterman, Y. 1992. Maternal effects on seeds during development. Pages 2759. in Fenner, M. ed. Seeds: The Ecology of Regeneration in Plant Communities. Wallingford, UK C.A.B. International.
Kivilaan, A. and Bandurski, R. S. 1973. The ninety-year period of Dr. Beal's seed viability experiment. Am. J. Bot. 60:321325.
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.
Mulugeta, D. and Stoltenberg, D. E. 1998. Influence of cohorts on Chenopodium album demography. Weed Sci. 46:6570.
Oryokot, J. O. and Swanton, C. J. 1997. Effect of tillage and corn on pigweed (Amaranthus spp.) seedling emergence and density. Weed Sci. 45:120126.
Roberts, H. A. and Feast, P. M. 1972. Fate of seeds of some annual weeds in different depths of cultivated and undisturbed soil. Weed Res. 12:316324.
Rojas-Garciduenas, M. and Kommedahl, T. 1960. The effect of 2,4-D on germination of pigweed seed. Weeds. 8:15.
SAS 2000. SAS User's Guide, Version 8. Cary, NC SAS Institute.
Sauer, J. and Struik, G. 1964. A possible ecological relation between soil disturbance, light-flash, and seed germination. Ecology. 45:884886.
Schweizer, E. E. and Zimdahl, R. L. 1984. Weed seed decline in irrigated soil after six years of continuous corn (Zea mays) and herbicides. Weed Sci. 32:7683.
Scopel, A. L., Ballare, C. L., and Sanchez, R. A. 1991. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant Cell Environ. 14:501508.
Steckel, L. E., Sprague, C. L., Stoller, E. W., Bollero, G., and Wax, L. M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Sci. 52:217221.
Steckel, L. E., Sprague, C. L., Hager, A. G., Simmons, F. W., and Bollero, G. 2003. Effects of shading on common waterhemp growth and development. Weed Sci. 51:898903.
Stoller, E. W. and Wax, L. M. 1974. Dormancy changes and fate of some annual weed seeds in the soil. Weed Sci. 22:151155.
Taylorson, R. B. and Hendricks, S. B. 1977. Dormancy in seeds. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 28:331354.
Toole, E. H. and Brown, E. 1946. Final results of the Duvel buried seed experiment. J. Agric. Res. 72:201210.


Tillage, Cropping System, and Soil Depth Effects on Common Waterhemp (Amaranthus rudis) Seed-Bank Persistence

  • Lawrence E. Steckel (a1), Christy L. Sprague (a2), Edward W. Stoller (a3), Loyd M. Wax (a3) and F. William Simmons (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed