Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T10:17:18.341Z Has data issue: false hasContentIssue false

Effect of Postemergence Mesotrione Application Timing on Grain Sorghum

Published online by Cambridge University Press:  20 January 2017

M. Joy M. Abit
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Kassim Al-Khatib*
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Randall S. Currie
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Phillip W. Stahlman
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Patrick W. Geier
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Barney W. Gordon
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Brian L. S. Olson
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Mark M. Claassen
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
David L. Regehr
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
*
Corresponding author's E-mail: khatib@ksu.edu.

Abstract

Field experiments were conducted at Belleville, Colby, Hays, Hesston, Garden City, and Manhattan, KS, to determine grain sorghum response to POST application of mesotrione at three application timings. Mesotrione was applied at 52, 105, 157, and 210 g ai/ha in combination with 280 g ai/ha atrazine to grain sorghum at heights of 5 to 8, 15 to 20, and 30 cm, which correspond to early POST (EPOST), mid-POST (MPOST), and late POST (LPOST), respectively. All mesotrione rates caused injury at all application timings. Overall, grain sorghum injury from mesotrione was greatest at 1 wk after treatment (WAT); plants partially recovered from injury by 4 WAT. Mesotrione applied EPOST injured grain sorghum more than when applied at MPOST and LPOST timings. The EPOST application injured grain sorghum 19 to 88%, whereas injury from MPOST and LPOST application was 1 to 66% and 0 to 69%, respectively, depending on rate. Mesotrione injury was least at Belleville and most at the Hesston and Garden City (irrigated) sites regardless of growth stage. Correlation coefficient analyses indicated that observed mesotrione injury symptoms were not well correlated with grain sorghum yield; thus, mesotrione injury to grain sorghum did not influence grain yield. However, initial grain sorghum injury was severe, and this will likely be a major concern to producers.

Se condujeron experimentos de campo en Belleville, Colby, Hays, Hesston, Garden City y Manhattan, KS para determinar la respuesta de aplicaciones post-emergentes en sorgo de grano de mesotrione en 3 intervalos de aplicación. El mesotrione fue aplicado en dosis de 52, 105, 157 y 210 g ia/ha en combinación con 280 g ia/ha de atrazine en etapas de crecimiento de 5 a 8 cm., de 15 a 20 cm y de 30 cm, las cuales corresponden a la emergencia temprana (EPOST), emergencia media (MPOST) y emergencia tardía (LPOST) respectivamente. Todas las dosis de mesotrione causaron daño en todos los intervalos de aplicación. De todos los tratamientos el que mayor daño causó al sorgo de grano fue el de mesotrione aplicado una semana después del tratamiento (1 WAT), las plantas se recuperaron parcialmente de los daños a las 4 semanas después del tratamiento (4 WAT). La aplicación temprana de mesotrione (EPOST) causó más daño al sorgo que cuando fue aplicado en la emergencia media (MPOST) y la emergencia tardía. La aplicación temprana dañó el sorgo de un 19% a un 88% mientras que el daño en la emergencia media y emergencia tardía fue de un 1% a un 66% y de un 0 % a un 69% respectivamente, dependiendo de la dosis. El menor daño causado por mesotrione ocurrió en Belleville y el mayor en Hesston y Garden City, ambos sitios irrigados, independientemente de la etapa de crecimiento. El análisis del coeficiente de correlación indicó que los daños observados por la aplicación de mesotrione no fueron bien correlacionados con los rendimientos del sorgo, mientras que el daño de mesotrione no incluyó los rendimientos del grano. Sin embargo, el daño inicial fue severo, y esto será probablemente una preocupación importante para los productores de sorgo.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abit, M. J. M., Al-Khatib, K., Regher, D. L., Tuinstra, M. R., Claassen, M. M., Stahlman, P. W., Gordon, B. W., and Currie, R. S. 2009. Differential response of sorghum hybrids to foliar applied mesotrione. Weed Technol 23:2833.Google Scholar
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol 10:570575.Google Scholar
Anonymous 2008a. Herbicide Resistant Weeds of USA. http://www.weedscience.org/Summary/UniqueCountry.asp?lstCountryID=45. Accessed: July 30, 2008.Google Scholar
Anonymous 2008b. Kansas State University Weather Data Library. http://www.ksre.ksu.edu/wdl/. Accessed: July 25, 2008.Google Scholar
Armel, G. R., Wilson, H. P., Richardson, R. J., and Hines, T. E. 2003a. Mesotrione alone and in mixtures with glyphosate in glyphosate-resistant corn (Zea mays). Weed Technol 17:680685.Google Scholar
Armel, G. R., Wilson, H. P., Richardson, R. J., and Hines, T. E. 2003b. Mesotrione combinations in no-till corn (Zea mays). Weed Technol 17:111116.Google Scholar
Boyer, J. S. 1982. Plant productivity and environment. Science 218:443448.Google Scholar
Bridges, D. C. 1992. Crop Losses Due to Weeds in the United States. Champaign, IL: Weed Science Society of America. 403.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620626.Google Scholar
Feltner, K. C., Hurst, H. R., and Anderson, L. E. 1969. Yellow foxtail competition in grain sorghum. Weed Sci 17:211213.Google Scholar
Hall, B. and Bohner, H. 2008. Economic Potential of Grain Sorghum for the Ethanol Market. Crop Advances: Field Crop Reports. Ontario Soil and Crop Improvement Association. http://www.ontariosoilcrop.org/User/Docs/Crop%20Advances/CA_V4_2007part2.pdf. Accessed: July 30, 2008.Google Scholar
Heap, I. M. 1997. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci 51:235243.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol 9:192195.Google Scholar
Horky, K. T. and Martin, A. R. 2005. Evaluation of preemergence weed control programs in grain sorghum. Pages 3032. in. 2005 NCWSS Research Report-V.62, Weed Control in Specialty Crops. Lincoln, NE.Google Scholar
Johnson, B. C., Young, B. G., and Matthews, J. L. 2002. Effect of postemergence application rate and timing of mesotrione on corn (Zea mays) response and weed control. Weed Technol 16:414420.Google Scholar
Kuehl, R. O. 2000. Design of Experiments: Statistical Principles of Research and Analysis. 2nd ed. Pacific Grove, CA: Brooks/Cole. 665.Google Scholar
Miller, J. N. and Regehr, D. L. 2002. Grain sorghum tolerance to postemergence mesotrione applications. Proc. N. Cent. Weed Sci 57:136.Google Scholar
Moore, J. W., Murray, D. S., and Westerman, R. B. 2004. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield of grain sorghum (Sorghum bicolor). Weed Technol 18:2329.Google Scholar
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 51:145150.Google Scholar
Stephenson, D. O. IV, Bond, J. A., Walker, E. R., Bararpour, M. T., and Oliver, L. R. 2004. Evaluation of mesotrione in Mississippi delta corn production. Weed Technol 18:11111116.Google Scholar
Sutton, P. B., Richards, C., Buren, L., and Glasgow, L. 2002. Activity of mesotrione on resistant weeds in maize. Pest Manag. Sci 58:981984.Google Scholar
Taiz, L. and Zeiger, E. 2006. Plant Physiology. 4th ed. Sunderland, MA: Sinauer Associates. 764.Google Scholar
Vencill, W. K., Grey, T. L., Culpepper, A. S., Shilling, D., and Webster, T. M. 2006. Physiology of glyphosate-resistant palmer amaranth (Amaranthus palmeri). Pages 22542258. in Proceedings of the Beltwide Cotton Conference. San Antonio, TX.Google Scholar