Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T04:03:21.024Z Has data issue: false hasContentIssue false

Herbicide and Cover Crop Residue Integration for Amaranthus Control in Conservation Agriculture Cotton and Implications for Resistance Management

Published online by Cambridge University Press:  20 January 2017

Andrew J. Price*
Affiliation:
U.S. Department of Agriculture, Agricultural Research Services, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832
Kip S. Balkcom
Affiliation:
U.S. Department of Agriculture, Agricultural Research Services, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832
Leah M. Duzy
Affiliation:
U.S. Department of Agriculture, Agricultural Research Services, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832
Jessica A. Kelton
Affiliation:
Department of Agronomy and Soils, Auburn University, 202 Funchess Hall, Auburn University, AL 36849-5412
*
Corresponding author's E-mail: andrew.price@ars.usda.gov

Abstract

Conservation agriculture (CA) practices are threatened by glyphosate-resistant Palmer amaranth. Integrated control practices including PRE herbicides and high-residue CA systems can decrease Amaranthus emergence. Field experiments were conducted from autumn 2006 through crop harvest in 2009 at two sites in Alabama to evaluate the effect of integrated weed management practices on Amaranthus population density and biomass, cotton yield, and economics in glyphosate-resistant cotton. Horizontal strips included four CA systems with three cereal rye cover crop seeding dates and a winter fallow (WF) CA system compared to a conventional tillage (CT) system. Additionally, vertical strips of four herbicide regimes consisted of: broadcast, banded, or no PRE applications of S-metolachlor (1.12 kg ai ha−1) followed by (fb) glyphosate (1.12 kg ae ha−1) applied POST fb layby applications of diuron (1.12 kg ai ha−1) plus MSMA (2.24 kg ai ha−1) or the LAYBY application alone. Early-season Amaranthus density was reduced in high-residue CA in comparison to the CA WF systems in 2 of 3 yr. Amaranthus densities in herbicide treatments that included a broadcast PRE application were lower at three of five sampling dates compared to banding early-season PRE applications; however, the differences were not significant during the late season and cotton yields were not affected by PRE placement. High-residue conservation tillage yields were 577 to 899 kg ha−1 more than CT, except at one site in 1 yr when CT treatment yields were higher. CA utilizing high-residue cover crops increased net returns over CT by $100 ha−1 or more 2 out of 3 yr at both locations. High-residue cover crop integration into a CA system reduced Amaranthus density and increased yield over WF systems; the inclusion of a broadcast PRE application can increase early-season Amaranthus control and might provide additional control when glyphosate-resistant Amaranthus populations are present.

Las prácticas de agricultura de conservación (CA) están amenazadas por Amaranthus palmeri resistente al glifosato. Las prácticas integradas de control que incluyen herbicidas PRE y sistemas de CA con altos niveles de residuos, pueden disminuir la emergencia de Amaranthus. Se llevaron a cabo experimentos de campo del otoño de 2006 hasta la cosecha del cultivo en 2009 en dos sitios en Alabama para evaluar el efecto de las prácticas integradas de manejo de malezas en la densidad de la población y la biomasa de Amaranthus, en el rendimiento del algodón y en lo económico, en algodón resistente a glyphosate. Bandas horizontales incluyeron cuatro sistemas CA: tres fechas de siembra de centeno como cultivo de cobertura y un sistema CA de barbecho de invierno (WF), comparados a un sistema de labranza convencional (CT). Adicionalmente, bandas verticales de cuatro regímenes de herbicidas, que consistieron en: aplicación general, aplicación en bandas o sin aplicaciones PRE de S-metolachlor (1.12 kg ia ha−1), seguida de (fb) glyphosate (1.12 kg ea ha−1) aplicado POST fb, aplicaciones layby de diuron (1.12 kg ia ha−1) más MSMA (2.24 kg ia ha−1) o solo la aplicación LAYBY. La densidad de Amaranthus, temprano en la temporada de crecimiento, se redujo en sistemas CA de altos residuos en comparación con los sistemas CA de WF en 2 de los 3 años. Las densidades de Amaranthus en tratamientos de herbicidas que incluyeron aplicaciones generales PRE fueron más bajas en tres de las cinco fechas de muestreo, comparadas a las aplicaciones PRE en banda temprano en la temporada; sin embargo, las diferencias no fueron significativas tarde en la temporada y los rendimientos del algodón no se vieron afectados por la ubicación de la aplicación PRE. Los rendimientos derivados de la labranza de conservación de altos residuos fueron de 577 a 899 Kg ha−1 más que CT, excepto en un sitio en un año cuando los rendimientos por tratamientos CT fueron más altos. Las prácticas CA utilizando cultivos de cobertura de altos residuos, incrementaron las utilidades netas por encima de la labranza convencional CT en $100 ha−1 o más, en dos de los tres años en ambos sitios. La integración de un cultivo de cobertura de altos residuos en un sistema CA redujo la densidad de Amaranthus e incrementó el rendimiento por encima de los sistemas WF. La inclusión de una aplicación general PRE puede incrementar el control de Amaranthus temprano en la temporada y también puede proporcionar control adicional cuando hay poblaciones de Amaranthus resistentes a glyphosate presentes.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ashford, D. L. and Reeves, D. W. 2003. Use of a mechanical roller-crimper as an alternative kill method for cover crops. Am. J. Altern. Agric. 18:3745.Google Scholar
Aulakh, J. S., Price, A. J., and Balkcom, K. S. 2011. Weed management and cotton yield under two row spacings, conventional and conservation tillage systems utilizing conventional, glufosinate-, and glyphosate-based weed management systems. Weed Technol. 25:542547.Google Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (Amaranthus palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.Google Scholar
Culpepper, A. S. 2006. Glyphosate-induced weed shifts. Weed Technol. 20:277281.Google Scholar
Culpepper, S., Kichler, J., and Sosnoskie, L. 2011. University of Georgia Programs for Controlling Moderate to Severe Populations of Glyphosate-Resistant Palmer Amaranth in 2011 Cotton. http://mulch.cropsoil.uga.edu/weedsci/HomepageFiles/Palmerhandout-2011.pdf. Accessed: March 7, 2011.Google Scholar
Culpepper, A. S., Kichler, J., Sosnoskie, L., York, A., Sammons, D., and Nichols, R. 2010. Integrating cover crop residue and moldboard plowing into glyphosate-resistant Palmer amaranth management programs, Page 1531 in Proceedings of Beltwide Cotton Conference. New Orleans, LA National Cotton Council of America.Google Scholar
Culpepper, A. S., York, A. C., MacRae, A. W., Kichler, J., Whitaker, J., and Davis, A. L. 2007. Managing glyphosate-resistant Palmer amaranth in conventional and strip-till Roundup Ready cotton. Pages 12301231 in Proceedings of the Beltwide Cotton Conference. Memphis, TN National Cotton Council of America.Google Scholar
Edmisten, K. L., Yelverton, F. H., Spears, J. F., Bowman, D. T., Bacheler, J. S., Koenning, S. R., Crozier, C. R., Meijer, A. D., and Culpepper, A. S. 2010. 2010 Cotton Information. NCSU Cooperative Extension Publication. http://ipm.ncsu.edu/Production_Guides/Cotton/contents.pdf. Accessed: March 7, 2011.Google Scholar
Firbank, L. G. and Watkinson, A. R. 1985. On the analysis of competition within two species mixtures of plants. J. Appl. Ecol. 22:503517.Google Scholar
Gustafson, D. I. 2008. Sustainable use of glyphosate in North American cropping systems. Pest Manag. Sci. 64:409416.Google Scholar
Masiunas, J. B., Weston, L. A., and Weller, S. C. 1995. The impact of rye cover crops on weed populations in a tomato cropping system. Weed Sci. 43:318323.Google Scholar
Mirsky, S. B., Curran, W. S., Mortensen, D. M., Ryan, M. R., and Shumway, D. L. 2011. Timing of cover crop management effects on seed suppression in no-till planted soybean using a roller-crimper. Weed Sci. 59:380389.Google Scholar
[MSU] Mississippi State University. 2010. Cotton 2010 Planning Budgets. Department of Agricultural Economics, Mississippi State University. Budget Report 2009–02. http://www.agecon.msstate.edu/what/farm/budget/pdf/10/MSUCOT10.pdf. Accessed: February, 2010.Google Scholar
Mitich, L. W. 1997. Redroot pigweed (Amaranthus retroflexus). Weed Technol. 11:199202.Google Scholar
Mohler, C. L. and Teasdale, J. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 33:487499.Google Scholar
Molin, W. T. 2006. Contributions of tillage, rye cover crop and herbicide programs to weed control in glyphosate-tolerant cotton. Pages 171173 in Schwartz, R. C., Baumhardt, R. L. and Bell, J. M., eds. Proceedings of the 28th Southern Conservation Tillage Systems Conference. Bushland, TX.Google Scholar
[NASS] National Agricultural Statistics Service. 2010. Quick Stats. United States Department of Agriculture, Washington, DC. http://quickstats.nass.usda.gov/. Accessed: July, 2010.Google Scholar
Neve, P., Norsworthy, J. K., Smith, K. L., and Zelaya, I. A. 2011. Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in cotton. Weed Technol. 25:335343.Google Scholar
Norsworthy, J. K., McClelland, M., Griffith, G., Bangarwa, S. K., and Still, J. 2011. Evaluation of cereal and Brassicaceae cover crops in conservation-tillage, enhanced, glyphosate-resistant cotton. Weed Technol. 25:613.Google Scholar
Norsworthy, J. K., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Response of northeastern Arkansas Palmer amaranth (Amaranthus palmeri) accessions to glyphosate. Weed Technol. 22:408413.Google Scholar
Price, A. J., Balkcom, K. S., Culpepper, S. A., Kelton, J. A., Nichols, R. L., and Schomberg, H. 2011b. Glyphosate-resistant Palmer amaranth: a threat to conservation agriculture. J. Soil Water Conserv. 66:265275.Google Scholar
Price, A. J., Balkcom, K. S., Raper, R. L., Monks, C. D., Barentine, R. M., and Iversen, K. V. 2011a. Controlling Glyphosate-Resistant Pigweed in Conservation Tillage Cotton Systems. Special Publication 09. http://www.ars.usda.gov/SP2UserFiles/Place/64200500/csr/SpecialPubs/SP09.pdf. Accessed: March 7, 2011.Google Scholar
Price, A. J., Reeves, D. W., and Patterson, M. G. 2006. Evaluation of weed control provided by three winter cereals in conservation-tillage soybean. Renewable Agric. Food Sys. 21:159164.Google Scholar
Price, A. J., Reeves, D. W., Patterson, M. G., Gamble, B. E., Balkcom, K. S., Arriaga, F. J., and Monks, C. D. 2007. Weed control in peanut in a high residue conservation-tillage system. Peanut Sci. 34:5964.Google Scholar
Reberg-Horton, S. C., Grossman, J. M., Kornecki, T. S., Meijer, A. D., Price, A. J., Place, G. T., and Webster, T. M. 2011. Utilizing cover crop mulches to reduce tillage in organic systems in the Southeast. Renewable Agric. Food Sys. 27:4148. http://journals.cambridge.org/repo_A840SJ3h. Accessed: January 4, 2012.Google Scholar
Reeves, D. W., Price, A. J., and Patterson, M. G. 2005. Evaluation of three winter cereals for weed control in conservation-tillage non-transgenic cotton. Weed Technol. 19:731736.Google Scholar
Reiter, M. S., Reeves, D. W., Burmester, C. H., and Torbert, H. A. 2007. Cotton nitrogen management in a high-residue conservation system: cover crop fertilization. Soil Sci. Soc. Am. J. 72:13211329.Google Scholar
Ryan, M. R., Curran, W. S., Grantham, A. M., Hunsberger, L. K., Mirsky, S. B., Mortensen, D. A., Nord, E. A., and Wilson, D. O. 2011. Effects of seeding rate and poultry litter on weed suppression from a rolled cereal rye cover crop. Weed Sci. 59:438444.Google Scholar
Saini, M., Price, A. J., and van Santen, E. 2006. Cover crop residue effects on early-season weed establishment in a conservation-tillage corn-cotton rotation. Pages 175178 in Schwartz, R. C., Baumhardt, R. L. and Bell, J. M., eds. Proceedings of the 28th Southern Conservation Tillage Systems Conference. Bushland, TX.Google Scholar
Schomberg, H. H., McDaniel, R. G., Mallard, E., Endale, D. M., Fisher, D. S., and Cabrera, M. L. 2006. Conservation tillage and cover crop influences on cotton production on a southeastern U.S. Coastal Plain soil. Agron. J. 98:12471256.Google Scholar
Schwab, E. B., Reeves, D. W., Burmester, C. H., and Raper, R. L. 2002. Conservation tillage systems for cotton in the Tennessee Valley. Soil Sci. Soc. Am. J. 66:569577.Google Scholar
Scott, R. C. and Smith, K. 2006. Prevention and Control of Glyphosate-Resistant Pigweed in Roundup Ready™ Soybean and Cotton. University of Arkansas Cooperative Extension Fact Sheet FSA2152. http://www.uaex.edu/Other_Areas/publications/PDF/FSA-2152.pdf. Accessed: March 7, 2011.Google Scholar
Smith, A. N., Reberg-Horton, S. C., Place, G. T., Meijer, A. D., Arellano, C., and Mueller, J. P. 2011. Rolled rye mulch for weed suppression in organic no-tillage soybeans. Weed Sci 59:224231.Google Scholar
Steckel, L. 2011. 2011 Weed Control Manual for Tennessee. University of Tennessee Cooperative Extension Fact Sheet 1580. http://weeds.utk.edu/WeedTemplate_files/WeedControlManual/FINAL%20COMPLETE%20DRAFT.pdf. Accessed: March 7, 2011.Google Scholar
Steel, R. G. D. and Torrie, J. H. 1980. Principles and procedures of statistics, a biometrical approach. Tokyo, Japan McGraw-Hill Kogakusha, Ltd. 633 p.Google Scholar
Toler, J. E., Murdock, E. C., and Keeton, A. 2002. Weed management systems for cotton (Gossypium hirsutum) with reduced tillage. Weed Technol. 16:773780.Google Scholar
[UA] University of Arkansas. 2006. Herbicide Resistance: A Growing Problem in Arkansas. University of Arkansas Cooperative Extension Publication. http://www.aragriculture.org/weeds/herbicide_resistance.pdf. Accessed: March 7, 2011.Google Scholar
[UGA] University of Georgia. 2010. Cotton 2010 Conventional Tillage, Non-Irrigated Budget. Extension Agricultural and Applied Economics, University of Georgia. http://www.ces.uga.edu/Agriculture/agecon/printedbudgets.htm. Accessed: February, 2010.Google Scholar
Vasilakoglou, I., Dhima, I., Eleftherohorinos, I., and Lithourgidis, A. 2006. Winter cereal cover crop mulches and inter-row cultivation effects on cotton development and grass suppression. Agron. J. 98:12901297.Google Scholar
Webster, T. M. 2005. Weed survey—southern states: broadleaf crops subsection. Proc. South. Weed Sci. Soc. 58:291304.Google Scholar
Whitaker, J. R., York, A. C., Jordan, D. L., and Culpepper, A. S. 2011. Weed management with glyphosate- and glufosinate-based systems in PHY 485 WRF cotton. Weed Technol. 25:183191.Google Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., Vencill, W. K., and Webster, T. M. 2009. Establishing the geographical distribution and level of acetolactate synthase resistance of palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23:214220.Google Scholar
Yenish, J. P., Worsham, A. D., and York, A. C. 1996. Cover crops for herbicide replacement in no-tillage corn (Zea mays). Weed Technol. 10:815821.Google Scholar