Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T13:13:50.163Z Has data issue: false hasContentIssue false

Integration of Vinegar for In-Row Weed Control in Transplanted Bell Pepper and Broccoli

Published online by Cambridge University Press:  20 January 2017

G. J. Evans*
Affiliation:
Department of Horticulture, Cornell University, Ithaca, NY 14853
R. R. Bellinder
Affiliation:
Department of Horticulture, Cornell University, Ithaca, NY 14853
R. R. Hahn
Affiliation:
Department of Crop and Soil Science, Cornell University
*
Corresponding author's E-mail: gje2@cornell.edu.

Abstract

Vinegar can supplement the existing intrarow weed control options of organic farmers. However, there are two primary limitations to its use in vegetable crops. First, it is costly. Second, vinegar applications that contact the crop can cause injury and yield loss. The aim of this research was to use vinegar to control intrarow weeds in bell pepper and broccoli in a way that product costs would be reduced and crop injury would be minimized. Banded applications were shielded and directed below the crop canopy to reduce weed control costs and minimize contact with crop foliage. Organic paints applied to crop stems were evaluated as potential physical barriers to crop stem injury. Four field trials were conducted in 2009, two in transplanted bell pepper and two in transplanted broccoli. A single application of 200-grain vinegar (20% acetic acid) at 700 L ha−1 was applied when weeds were in the cotyledon to six-leaf stage. Applications were made to crops with the lower stems coated in one of two stem protectants, or left uncoated. Hand-weeded and weedy treatments were included for comparison. One day after vinegar application, in-row weed control was 100% in both pepper trials and greater than 96% in the broccoli trials. Two weeks after application, 75% fewer weeds germinated in the vinegar-treated areas compared with the areas that were hand weeded. Neither stem protectant prevented crop injury. Despite pepper foliar injury of less than 5%, stem injury 2 wk after application contributed to a measurable yield reduction. Broccoli injury was limited to instances where overspray contacted the crop canopy. With vinegar, high levels of weed control and the extended duration of that control relative to hand weeding could facilitate improved organic intrarow weed control. However, crop injury must be reliably reduced. Alternative stem protectants may merit evaluation.

El vinagre puede complementar las opciones existentes de control de malezas entre los surcos utilizadas por los agricultores de productos orgánicos. Sin embargo, existen dos limitantes principales para su uso en cultivos de hortalizas: primeramente es costoso, segundo; las aplicaciones de vinagre que tengan contacto con el cultivo pueden causar daño y pérdida en el rendimiento. El propósito de esta investigación fue utilizar el vinagre en el control de malezas entre los surcos en el cultivo de pimiento morrón (Capsicum annuum) y brócoli (Brassica oleracea), de manera que los costos del producto se redujeran y el daño en el cultivo fuera minimizado. Aplicaciones en banda se hicieron con pantalla y se dirigieron debajo del follaje del cultivo para reducir el costo del control de malezas y minimizar el contacto con el follaje. Pinturas orgánicas aplicadas al tallo del cultivo se evaluaron como barreras físicas potenciales contra el daño al tallo. Cuatro estudios de campo se realizaron en 2009, dos en pimiento morrón y dos en brócoli, ambos transplantados. Una sola aplicación de vinagre (20% ácido acético) a 700 L ha-1 se hizo cuando las malezas estaban en la etapa de cotiledón a 6 hojas. Las aplicaciones se hicieron a los cultivos con los tallos inferiores cubiertos con uno de los dos protectores, o se dejaron descubiertos. Para comparación se usó un tratamiento con control manual y uno sin control de malezas. Un día después de la aplicación del vinagre, el control de malezas entre surcos fue 100% en ambos campos de pimiento morrón, y mayor de 96% en los campos de brócoli. Dos semanas después de la aplicación, 75% menos malezas germinaron en las áreas tratadas con vinagre, en comparación con aquellas donde se eliminaron manualmente. Ninguno de los dos protectores del tallo evitó el daño al cultivo. A pesar del daño foliar del pimiento morrón de menos de 5%, el daño a los tallos dos semanas después de la aplicación contribuyó a una reducción cuantificable en el rendimiento. El daño al brócoli se limitó a instancias donde el aspersor tuvo contacto con el follaje del cultivo. Con el vinagre, altos niveles de control de maleza y la duración residual de ese control en relación al control manual, se podría mejorar el control orgánico de malezas entre los surcos. Sin embargo, el daño al cultivo debe ser reducido con cierta precisión. Otros protectores del tallo ameritan una evaluación posterior.

Type
Weed Managment—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abouziena, H. F. H., Omar, A. A. M., Sharma, S. D., and Singh, M. 2009. Efficacy comparison of some new natural-product herbicides for weed control at two growth stages. Weed Technol. 23:431437.CrossRefGoogle Scholar
Agnello, A. and Breth, D. 2009. Scaffolds fruit journal: Update on pest management and crop development. Geneva, NY NYSAES. 18:35. Available at http://www.nysaes.cornell.edu/ent/scaffolds/2009/090323.pdf. Accessed: December 23, 2009.Google Scholar
Anonymous, . 2006. Crop profile for peppers (bell) in Florida. Raleigh, NC Center for Integrated Pest Management, http://www.ipmcenters.org/cropprofiles/docs/FLbellpepper.pdf. Accessed: February 11, 2011.Google Scholar
Anonymous, . 2007. Chemical Compatibility Table. London, UK Cole-Parmer, http://www.coleparmer.co.uk/techinfo/chemcomp.asp. Accessed: February 10, 2011.Google Scholar
Anonymous, . 2008. Weed Pharm MSDS. Port Townsend, WA Pharm Solutions Inc. 7 p. http://pharmsolutionsinc.com/dealerAssets/MSDS/MSDS_Weed_Pharm_07.pdf. Accessed: February 10, 2011.Google Scholar
Boyd, N. S. and Brennan, E. B. 2006. Burning nettle, common purslane, and rye response to a clove oil herbicide. Weed Technol. 20:646650.Google Scholar
Boydston, R. 2004. Weed control in potato with 200 grain vinegar applied postemergence. Prosser, WA USDA-ARS. Pp. 13.Google Scholar
Brown, J. E. and Channell-Butcher, C. 2001. Black plastic mulch and drip irrigation affect growth and performance of bell pepper. J. Veg. Crop Prod. 7:109112.Google Scholar
Chandran, R. S. 2003. Evaluation of vinegar and corn gluten for weed control in field-grown sweet pepper. Proc. Northeast. Weed Sci. Soc. 57:65.Google Scholar
Chandran, R. S., Stenger, M., and Mandal, M. 2003. Effect of vinegar on potato weed control. Proc. Northeast. Weed Sci. Soc. 58:82.Google Scholar
Coffman, C. B., Radhakrishnan, J., and Teasdale, J. R. 2004. Vinegar for weed management in corn and soybean. Proc. Northeast. Weed Sci. Soc. 58:74.Google Scholar
Coffman, C. B., Radhakrishnan, J., and Teasdale, J. R. 2005. Corn and soybean responses to basal applications of vinegar. Proc. Northeast. Weed Sci. Soc. 59:79.Google Scholar
Coffman, C. B., Radhakrishnan, J., and Teasdale, J. R. 2007. Broccoli and edamame responses to vinegar application for weed management. Proc. Northeast. Weed Sci. Soc. 61:21.Google Scholar
Curran, W. S., Lingenfelter, D. D., and Muse, C. B. 2003. Vinegar and clove oil for nonselective control of annual weeds. Proc. Northeast. Weed Sci. Soc. 88:21.Google Scholar
Daniels, C. H. 2004. Washington State pest management resource service; acetic acid registration letter April 13, 2004. Spokane, WA Washington State University. Pp. 13.Google Scholar
Evans, G. J. 2010. Novel Weed Management: Design, Construction, and Evaluation of Two Interrow Cultivation Tools, and the Integration of Vinegar for Intrarow Weed Control. Ph.D Dissertation. Ithaca, NY Cornell University. 107 p.Google Scholar
Evans, G. J. and Bellinder, R. R. 2009. The potential use of vinegar and a clove oil herbicide for weed control in sweet corn, potato, and onion. Weed Technol. 23:120128.Google Scholar
Evans, G. J., Bellinder, R. R., and Goffinet, M. C. 2009. Herbicidal effects of vinegar and a clove oil product on redroot pigweed (Amaranthus retroflexus) and velvetleaf (Abutilon theophrasti). Weed Technol. 23:292299.CrossRefGoogle Scholar
Ferguson, J. J. 2004. Evaluation of organic herbicides. HortScience 39:876.Google Scholar
Gianessi, L. P. and Reigner, N. P. 2007. The value of herbicides in U.S. crop production. Weed Technol. 21:559566.Google Scholar
Hochmuth, G. 1998. What to do with all that mulch? Am. Veg. Grower 46:45.Google Scholar
Johnson, E., Wolf, T., Caldwell, B., Barbour, R., Holm, R., and Sapsford, K. 2004. Efficacy of vinegar (acetic acid) as an organic herbicide. Spokane, WA Washington State University, http://www.spokane-county.wsu.edu/smallfarms/organic%20ag/ADF%20Vinegar%20Report%20Final.pdf. Accessed: February 11, 2011.Google Scholar
Klonsky, K., Smith, R. F., and Livingston, P. 1997. Sample costs to produce peppers in San Benito and Santa Clara Counties. University of California, Dept. of Agriculture and Resource Economics Publication. Available at: http://coststudies.ucdavis.edu/. Accessed: December 10, 2010.Google Scholar
Lamont, W. J. Jr. 1993. Plastic mulches for the production of vegetable crops. Hort. Technol. 3:3539.Google Scholar
Lanini, W. T. and Le Strange, M. 1994. Weed control economics in bell pepper (Capsicum annuum) with napropamide and hand weeding. Weed Technol. 8:530535.Google Scholar
Radhakrishnan, J., Teasdale, J. R., and Coffman, C. B. 2003. Agricultural applications of vinegar. Proc. Northeast Weed Sci. Soc. 57:6364.Google Scholar
Rice, P. J., McConnell, L. L., Heighton, L. P., Sadeghi, A. M., Isensee, A. R., Teasdale, J. R., Abdul-Baki, A. A., Harmen-Fetcho, J. A., and Hapeman, C. J. 2001. Run-off loss of pesticides and soil: a comparison between vegetative mulch and plastic mulch in vegetable production systems. J. Environ. Qual. 30:18081821.Google Scholar
Slaughter, D. C., Giles, D. K., and Downey, D. 2008. Autonomous robotic weed control systems: a review. Comput. Electr. Agric. 61:6378.Google Scholar
Teasdale, J. R. 2002. More on vinegar as a herbicide. North Dakota State University Crop and Pest Report 12: July 18. http://www.ag.ndsu.nodak.edu/aginfo/entomology/ndsucpr/Years/2002/July/18/weeds_18July02.htm#USE. Accessed: December 10, 2010.Google Scholar
Tillet, N. D., Hague, T., Grundy, A. C., and Dedousis, A. P. 2008. Mechanical within-row weed control for transplanted crops using computer vision. Biosyst. Eng. 99:171178.Google Scholar
VanSickle, J., Smith, S., and McAvoy, E. 2007. Production budget for bell peppers in Palm Beach County, Florida. University of Florida Extension Publication FE809. Pp. 14.Google Scholar