Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T00:56:52.277Z Has data issue: false hasContentIssue false

Response of Three Switchgrass (Panicum virgatum) Cultivars to Mesotrione, Quinclorac, and Pendimethalin

Published online by Cambridge University Press:  20 January 2017

Rick A. Boydston*
Affiliation:
Agricultural Research Service, U.S. Department of Agriculture, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350-9687
Harold P. Collins
Affiliation:
Agricultural Research Service, U.S. Department of Agriculture, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350-9687
Steven C. Fransen
Affiliation:
Crop and Soil Sciences Department, Washington State University, Prosser, WA 99350-9687
*
Corresponding author's E-mail: rick.boydston@ars.usda.gov.

Abstract

Annual grass weed control and switchgrass cultivar response to PRE-applied pendimethalin and POST-applied mesotrione and quinclorac was evaluated in 2005 and 2006 near Paterson, WA, in both newly seeded and 1-yr-old established switchgrass. Pendimethalin applied to newly planted switchgrass at 1.1 kg ai ha−1 at the one-leaf stage in 2005 or at 0.67 kg ha−1 PRE in 2006 severely injured and greatly reduced switchgrass stands. Mesotrione applied POST at 0.07 kg ai ha−1 injured newly planted switchgrass, reduced switchgrass height for several weeks after treatment, and reduced final switchgrass biomass by 54% both years. ‘Kanlow’ and ‘Cave-in-Rock’ cultivars were injured less by mesotrione than ‘Shawnee’ in 2005, whereas in 2006, Kanlow was injured less than Shawnee and Cave-in-Rock. Quinclorac applied POST at 0.56 kg ai ha−1 injured newly planted switchgrass less than mesotrione and pendimethalin but reduced final switchgrass biomass by 33% both years compared with treatment with atrazine alone. All three herbicide treatments controlled large crabgrass in the year of establishment. Green foxtail counts were reduced 93% or more by pendimethalin and quinclorac compared with nontreated controls, but mesotrione failed to control green foxtail. Pendimethalin applied PRE at 1.1 kg ha−1 did not injure 1-yr-old established switchgrass or reduce switchgrass biomass. Quinclorac applied POST at 0.56 kg ha−1 to established switchgrass reduced switchgrass biomass of the first harvest by 16% in 1 of 2 yr. Mesotrione applied POST at 0.07 kg ha−1 injured established switchgrass and reduced biomass of the first harvest by 33 and 17% in 2005 and 2006, respectively. Kanlow was injured the least by mesotrione in both years. Established switchgrass suppressed late-emerging annual grass weeds sufficiently to avoid the need for a grass-specific herbicide application.

El trabajo tuvo como objetivo evaluar el control de maleza de gramíneas anuales y la respuesta de cultivares de Panicum virgatum a pendimetalina aplicada en preemergencia (PRE) y de mesotrione y quinclorac en postemergencia (POST) en parcelas de nueva siembra y en parcelas de un año de establecidas. El trabajo se efectuó en terrenos cerca de Paterson, WA en 2005 y 2006. La pendimetalina en dosis de 1.1 kg ia ha−1, aplicada PRE en Panicum virgatum recién sembrado y en etapa de una hoja en 2005 o en dosis de 0.67 kg ia ha−1 en 2006, causó daño severo y redujo considerablemente el número de plantas. El mesotrione aplicado POST en dosis de 0.07 kg ia ha−1 dañó el Panicum virgatum recién sembrado, disminuyó su crecimiento por varias semanas después del tratamiento y redujo su biomasa final 54%, en ambos años. En 2005, la aplicación de mesotrione causó menos daño en los cultivares ‘Kanlow’ y ‘Cave-in-Rock’ que en el ‘Shawnee’; en 2006, el Kanlow se dañó menos que el Shawnee y el Cave-in-Rock. El quinclorac aplicado POST en dosis de 0.56 kg ia ha−1, causó menos daño en Panicum virgatum recién sembrado que el mesotrione y pendimetalina, pero disminuyó 33% su biomasa final en ambos años, comparado con el tratamiento de atrazina. Los tres tratamientos de herbicida controlaron Digitaria sanguinalis el año de establecimiento. Comparado con el testigo no tratado, el número de plantas de Setaria viridis se redujó 93% o más con pendimetalina y el quinclorac, pero el mesotrione no controló esta maleza. Pendimentalina aplicada PRE en dosis de 1.1 kg ia ha−1, no dañó las plantas de Panicum virgatum de un año de establecidas, ni redujo su biomasa. El quinclorac aplicado POST en dosis de 0.56 kg ia ha−1 en las parcelas ya establecidas de Panicum virgatum, redujo el 16% de la biomasa del primer corte, en uno de los dos años que duró el estudio. El mesotrione aplicado POST en dosis de 0.07 kg ia ha−1 dañó el pasto ya establecido y redujo el rendimiento de la primer cosecha en un 33% y en un 17% en el 2005 y 2006, respectivamente. El cultivar Kanlow sufrió un daño menor cuando se aplicó el mesotrione en ambos años. El Panicum virgatum ya establecido, suprimió la emergencia tardía de maleza de gramíneas anuales lo suficiente para evitar la necesidad de la aplicación de un herbicida específico para el control de gramíneas indeseables.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bahler, C. C., Vogel, K. P., and Moser, L. E. 1984. Atrazine tolerance in warm-season grass seedlings. Agron. J. 76:891895.Google Scholar
Becker, R. L. and Miller, D. W. 1998. Warm season grass establishment systems. Proc. West. Soc. Weed Sci 51:127128.Google Scholar
Buhler, D. D., Netzer, D. A., Riemenschneider, D. E., and Hartzler, R. G. 1998. Weed management in short rotation poplar and herbaceous perennial crops grown for biofuel production. Biomass Bioenergy 14:385394.CrossRefGoogle Scholar
Fransen, S., Collins, H. P., and Boydston, R. A. 2006. Perennial warm-season grasses for biofuels. Pages 147153. in. Proceedings of the Western Alfalfa Forage Symposium, Reno, NV. Davis, CA: University of California.Google Scholar
Griffin, T. S., Moser, L. E., and Martin, A. R. 1988. Influence of antidotes on forage grass seedling response to metolachlor and butylate. Weed Sci 36:202206.Google Scholar
Hintz, R. L., Harmoney, K. R., Moore, K. J., George, J. R., and Brummer, E. C. 1998. Establishment of switchgrass and big bluestem in corn with atrazine. Agron. J. 90:591596.CrossRefGoogle Scholar
Hsu, F. H. and Nelson, C. J. 1986a. Planting date effects on seedling development of perennial warm-season forage grasses. I. Field emergence. Agron. J. 78:3338.Google Scholar
Hsu, F. H. and Nelson, C. J. 1986b. Planting date effects on seedling development of perennial warm-season forage grasses. II. Seedling growth. Agron. J. 78:3842.CrossRefGoogle Scholar
Huo, C., Butler, T., Stein, J., and Interrante, S. 2009. Effect of different herbicides on switchgrass establishment. Pittsburgh, PA: American Society of Agronomy–Crop Science Society of America–Soil Science Society of America. Paper 55861.Google Scholar
Lair, K. and Redente, E. F. 2004. Influence of auxin and sulfonylurea herbicides on seeded native communities. J. Range Manag 57:211218.Google Scholar
Martin, A. R., Moomow, R. S., and Vogel, K. P. 1982. Warm-season grass establishment with atrazine. Agron. J. 74:916920.Google Scholar
Masters, R. A. 1995. Establishment of big bluestem and sand bluestem cultivars with metolachlor and atrazine. Agron. J. 87:592596.CrossRefGoogle Scholar
McElroy, J. S., Breeden, G. K., Yelverton, F. H., Gannon, T. W., Askew, S. D., and Derr, J. F. 2005. Response of four improved seeded Bermudagrass cultivars to postemergence herbicides during seeded establishment. Weed Technol 19:979985.Google Scholar
McLaughlin, S., Bouton, J., Bransby, D., Conger, B., Ocumpaugh, W., Parrish, D., Taliaferro, C., Vogel, K., and Wullschleger, S. 1999. Developing switchgrass as a bioenergy crop. Pages 282299. in Janick, J. ed. Perspectives on New Crops and New Uses. Alexandria, VA: ASHS Press.Google Scholar
Minelli, M., Rapparini, L., and Venturi, E. G. 2004. Weed management in switchgrass crop. 2nd World conference on Biomass for Energy, Industry and Climate Protection, Rome, Italy. 439441.Google Scholar
Mitchell, R., Vogel, K. P., Masters, R. A., and Berdahl, J. D. 2004. Herbicides for establishing switchgrass in the great plains. Madison, WI: American Society of Agronomy–Crop Science Society of America–Soil Science Society of America. Agronomy Abstracts CD-ROM 4505.Google Scholar
Myers, M., Adler, P., and Curran, W. 2006. Evaluation of weed control during switchgrass establishment with postemergence herbicides. Pages 175. in. Proceedings of the Fifth Eastern Native Grass Symposium, Harrisburg, PA. Washington, DC: USDA NRCS and USDA ARS.Google Scholar
Parish, D. J. and Fike, J. H. 2005. The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci 24:423459.Google Scholar
Peters, T. J., Moomaw, R. S., and Martin, A. R. 1989. Herbicides for postemergence control of annual grass weeds in seedling forage crops. Weed Sci 37:375379.Google Scholar
SAS 2000. Version 8.0. SAS User's Guide. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Schmer, M. R., Vogel, K. P., Mitchell, R. B., Moser, L. E., Eskridge, K. M., and Perrin, R. K. 2006. Establishment stand thresholds for switchgrass grown as a bioenergy crop. Crop Sci 46:157161.Google Scholar
Vogel, K. P. and Masters, R. A. 1998. Developing switchgrass into a biomass fuel crop for the Midwestern USA. in. Proceedings of the Bioenergy Conference. Madison, WI U.S. Department of Energy, Biomass Energy Program. http://bioenergy.ornl.gov/papers/bioen98/vogel.html Accessed April 11, 2008.Google Scholar
Wilson, R. G. Jr. 1995. Effect of imazethapyr on perennial grasses. Weed Technol 9:187191.Google Scholar