Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T02:47:29.371Z Has data issue: false hasContentIssue false

The Role of Pollen Allelopathy in Weed Ecology

Published online by Cambridge University Press:  20 January 2017

Stephen D. Murphy*
Affiliation:
Department of Environment and Resource Studies, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
*
Corresponding author's E-mail: sd2murph@fes.uwaterloo.ca.

Abstract

Pollen allelopathy results when pollen releases toxins that inhibit seed germination, seedling emergence, sporophytic growth, or sexual reproduction. Of the six known pollen-allelopathic species, two are crops (timothy and corn and four are weeds (orange hawkweed, parthenium, yellow hawkweed, and yellow-devil hawkweed). Allelopathic pollen in weeds could pose threats to crops, especially if both are wind pollinated. Even if it is the crop that is pollen-allelopathic, other crops could be threatened, or more likely, weeds might adapt to pollen allelopathy and pose a greater problem. Nonetheless, pollen allelopathy could be a useful approach to biological control because allelochemicals are packaged in a natural targeting system (pollen grains) and are biologically active at low doses (<10 grains/mm2 on stigmas). If it is to be an effective biological control agent, pollen allelopathy must be examined within the wider context of farming systems management and used as one method of varying selection pressures to prevent weeds from adapting to any one particular management technique or suite of techniques.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anaya, A. L., Ramos, L., Hernandez, J., and Ortega, R. C. 1987. Allelopathy in Mexico. In Waller, G. R., ed. Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series 330. Washington, DC: American Chemical Society Press. pp. 89101.CrossRefGoogle Scholar
Anaya, A. L., Hernandez-Bautista, B. E., Jimenez-Estrada, M., and Velasco-Ibarra, L. 1992a. Phenylacetic acid as a phytotoxic compound of corn pollen. J. Chem. Ecol. 18: 897905.Google Scholar
Anaya, A. L., Ortega, R. C., and Rodriguez, V. N. 1992b. Impact of allelopathy in the traditional management of agroecosystems in Mexico. In Rizvi, S.J.H. and Rizvi, V., eds. Allelopathy: Basic and Applied Aspects. London: Chapman and Hall. pp. 271302.CrossRefGoogle Scholar
Free, J. B. 1970. Insect pollination of crops. London: Academic Press. 544 p.Google Scholar
Gleissman, S. R. 2001. Allelopathy and agroecology. Weed Technol. Google Scholar
Jimenez, J. J., Schultz, K., Anaya, A. L., Hernandez, J., and Espejo, O. 1983. Allelopathic potential of corn pollen. J. Chem. Ecol. 9: 10111025.Google Scholar
Lovett, J. V. 1991. Changing perceptions of allelopathy and biological control. Biol. Agric. Hortic. 8: 89100.Google Scholar
McLernon, S. M., Murphy, S. D., and Aarssen, L. W. 1996. Heterospecific pollen transfer in sympatric grassland species. Am. J. Bot. 82: 11681174.Google Scholar
Murphy, S. D. 1992. The determination of the allelopathic potential of pollen and nectar. In Linskens, H. F. and Jackson, J. F., eds. Modern Methods of Plant Analysis. Volume 13. Plant Toxin Analysis. New York: Springer-Verlag. pp. 333357.Google Scholar
Murphy, S. D. 1993. The Occurrence and Consequences of Pollen Allelopathy in Phleum and Hieracium . , Queen's University, Kingston, ON, Canada. 325 p.Google Scholar
Murphy, S. D. 1999a. Is there a role for pollen allelopathy in biological control of weeds? In Narwal, S. S. and Tauro, P., eds. International Allelopathy Update. Volume 2. Enfield, NH. Science Publishers. pp. 204215.Google Scholar
Murphy, S.D. 1999b. Pollen allelopathy. In Inderjit, , Dakshini, K.M.M., and Foy, C. L., eds. Principles and Practices in Plant Ecology. Boca Raton, FL: CRC Press. pp. 129148.Google Scholar
Murphy, S. D. and Aarssen, L. W. 1989. Pollen allelopathy among sympatric grassland species: in vitro evidence in Phleum pratense L. New Phytol. 112: 295305.Google Scholar
Murphy, S. D. and Aarssen, L. W. 1995a. In vitro allelopathic effects of pollen from three Hieracium species (Asteraceae) and pollen transfer to sympatric Fabaceae. Am. J. Bot. 82: 3745.Google Scholar
Murphy, S. D. and Aarssen, L. W. 1995b. Allelopathic pollen extract from Phleum pratense L. (Poaceae) reduces germination, in vitro, of pollen in sympatric species. Int. J. Plant Sci. 156: 425434.Google Scholar
Murphy, S. D. and Aarssen, L. W. 1995c. Allelopathic pollen extract from Phleum pratense L. (Poaceae) reduces seed set in sympatric species. Int. J. Plant Sci. 156: 435444.Google Scholar
Murphy, S. D. and Aarssen, L. W. 1995d. Allelopathic pollen of Phleum pratense reduces seed set in Elytrigia repens in the field. Can. J. Bot. 73: 14171422.Google Scholar
Murphy, S. D. and Aarssen, L. W. 1996. Partial cleistogamy limits reduction in seed set in Danthonia compressa (Poaceae) by allelopathic pollen of Phleum pratense (Poaceae). Écoscience 3: 205210.CrossRefGoogle Scholar
Ortega, R. C., Anaya, A. L., and Ramos, L. 1988. Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J. Chem. Ecol. 14: 7186.Google Scholar
Putnam, A. and Tang, C. S. 1986. Allelopathy—state of the science. In Putnam, A. R. and Tang, C. S., eds. The Science of Allelopathy. New York: J. Wiley. pp. 19.Google Scholar
Rice, E. L. 1984. Allelopathy. 2nd ed. New York: Academic Press. 422 p.Google Scholar
Rizvi, S.J.H. and Rizvi, V. 1992. Exploitation of allelochemicals in improving crop productivity. In Rizvi, S.J.H. and Rizvi, V., eds. Allelopathy: Basic and Applied Aspects. London: Chapman and Hall. pp. 443471.Google Scholar
Scott, D. and Sutherland, B. L. 1993. Interaction between some pasture species and two Hieracium species. N. Z. J. Ecol. 17: 4751.Google Scholar
Sen, D. N. 1988. Key factors affecting weed-crop balance in agroecosystems. In Altieri, M. A. and Liebman, M., eds. Weed Management in Agroecosystems: Ecological Approaches. Boca Raton, FL: CRC Press. pp. 157182.Google Scholar
Smith, A. E. 1990. Potential allelopathic influence of certain pasture weeds. Crop Prot. 9: 410414.Google Scholar
Sukhada, K. D. and Jayachandra, . 1980a. Pollen allelopathy—a new phenomenon. New Phytol. 84: 739746.Google Scholar
Sukhada, K. D. and Jayachandra, . 1980b. Allelopathic effects of Parthenium hysterophorus L. Part IV. Identification of inhibitors. Plant Soil 55: 6775.Google Scholar
Swanton, C. J. and Murphy, S. D. 1996. Weed science beyond the weeds: the role of integrated weed management (IWM) in agroecosystem health. Weed Sci. 44: 437445.Google Scholar
Swanton, C. J. and Weise, S. F. 1991. Integrated weed management: the rationale and approach. Weed Technol. 5: 657663.Google Scholar
Tepedino, V., Knapp, A. K., Eickwort, G. C., and Ferguson, D. C. 1989. Death camas (Zigadenus nuttallii) in Kansas: pollen collectors and a florivore. J. Kans. Entomol. Soc. 62: 411412.Google Scholar
Thomson, J. D., Andrews, B. J., and Plowright, R. C. 1982. The effect of a foreign pollen on ovule development in Diervilla lonicera (Caprifoliaceae). New Phytol. 90: 777783.CrossRefGoogle Scholar