Skip to main content Accessibility help

An Evaluation of Two Novel Cultivation Tools

  • Glenn J. Evans (a1), Robin R. Bellinder (a1) and Russell R. Hahn (a2)


Cultivation is a critical component of organic weed management and has relevance in conventional farming. Limitations with current cultivation tools include high costs, limited efficacy, and marginal applicability across a range of crops, soil types, soil moisture conditions, and weed growth stages. The objectives of this research were to compare the weed control potential of two novel tools, a block cultivator and a stirrup cultivator, with that of a conventional S-tine cultivator, and to evaluate crop response when each tool was used in pepper and broccoli. Block and stirrup cultivators were mounted on a toolbar with an S-tine sweep. In 2008, the tripart cultivator was tested in 20 independently replicated noncrop field events. Weed survival and reemergence data were collected from the cultivated area of each of the three tools. Environmental data were also collected. A multivariable model was created to assess the importance of cultivator design and environmental and operational variables on postcultivation weed survival. Additional trials in 2009 evaluated the yield response of pepper and broccoli to interrow cultivations with each tool. Cultivator design significantly influenced postcultivation weed survival (P < 0.0001). When weed survival was viewed collectively across all 20 cultivations, both novel cultivators significantly increased control. Relative to the S-tine sweep, the stirrup cultivator reduced weed survival by about one-third and the block cultivator reduced weed survival by greater than two-thirds. Of the 11 individually assessed environmental and operational parameters, 7 had significant implications for weed control with the sweep; 5 impacted control with the stirrup cultivator, and only 1 (surface weed cover at the time of cultivation) influenced control with the block cultivator. Crop response to each cultivator was identical. The block cultivator, because of its increased effectiveness and operational flexibility, has the potential to improve interrow mechanical weed management.

La labranza es un componente crítico del manejo orgánico de malezas y tiene relevancia en la agricultura convencional. Las limitaciones de las herramientas de labranza actuales incluyen: altos costos, eficacia limitada y aplicabilidad marginal entre una variedad de cultivos, tipos y condiciones de humedad del suelo y las etapas de crecimiento de las malezas. Los objetivos de esta investigación fueron: 1) comparar el control potencial de malezas de dos nuevas herramientas (un cultivador de bloque y un cultivador de estribo), con un cultivador convencional de dientes pequeños y 2) evaluar la respuesta del cultivo cuando cada herramienta fue usada en pimiento y brócoli. Cultivadores de bloque y de estribo se instalaron en una barra de herramientas con una barredora de dientes pequeños. En 2008, este cultivador de tres partes se probó en campos sin cultivo, con 20 eventos/réplicas independientes. Los datos de supervivencia y re-emergencia de la maleza se recolectaron para cada una de las tres herramientas y también se recolectó información ambiental. Se creó un modelo multivariado para evaluar la importancia del diseño del cultivador, así como las variables ambientales y operacionales, en la supervivencia de las malezas después de la labranza. Ensayos adicionales en 2009 evaluaron la respuesta del rendimiento del pimiento y brócoli a la labranza entre-líneas con cada herramienta. El diseño de la herramienta de labranza impactó significativamente la supervivencia de la maleza (P<0.0001). Cuando la supervivencia de la maleza fue observada colectivamente entre todos los 20 eventos, los dos nuevos cultivadores mejoraron significativamente el control. En comparación con la barredora de dientes pequeños, el cultivador de estribo redujo la supervivencia de la maleza en cerca de un tercio, y el de bloque, redujo la supervivencia de las malezas en más de dos tercios. De los once parámetros ambientales y operacionales evaluados individualmente, siete tuvieron implicaciones significativas para el control de malezas con el barrido; cinco impactaron el control con el cultivador de estribo, y solamente uno (cobertura de la superficie con malezas al momento del cultivo), influyó en el control con el cultivador de bloque. La respuesta del cultivo a cada cultivador fue idéntica. Debido al aumento en la eficacia y flexibilidad operativa, el cultivador de bloque tiene potencial para mejorar el manejo mecánico de malezas entre líneas.


Corresponding author

Corresponding author's E-mail:


Hide All
Baerveldt, S. and Ascard, J. 1999. Effect of soil cover on weeds. Biol. Agric. Hort. 17:101111.
Ball, B. 2006. Mechanical weeding effects on soil structure under organic vegetables. Odense, Denmark. Joint Organic Congress. Accessed: September 23, 2009.
Bond, W., Turner, R. J., and Davies, G. 2007. A review of mechanical weed control. Coventry, UK HDRA: The Organic Organization. Pp. 123.
Bowman, G., ed. 1997. Steel in the field: A farmer's guide to weed management tools. Beltsville, MD Sustainable Agriculture Network. 128 p.
Colquhoun, J. and Bellinder, R. R. 1997. New cultivation tools for mechanical weed control in vegetables. Ithaca, NY Cornell University Cooperative Extension Publication, IPM fact sheet 102FSNCT. Pp. 23.
Colquhoun, J. B., Bellinder, R. R., and Kirkwyland, J. J. 1999. Efficacy of mechanical cultivation with and without herbicides in broccoli (Brassica oleracea), snap bean (Phaseolus vulgaris), and sweet corn (Zea mays). Weed Technol. 13:244252.
Cousens, R. and Moss, S. R. 1990. A model of the effects of cultivation on the vertical distribution of weed seeds within the soil. Weed Res. 30:6170.
Currie, B. W. 1916. The tractor and its influence upon the agricultural implement industry. Philadelphia, PA Curtis. 228 p.
Dexter, A. R. 2004. Soil physical quality: Part II. Friability, tillage, tilth and hard-setting. Geoderma 120:215225.
Dexter, A. R., Horn, R., and Kemper, W. D. 1988. Two mechanisms for age-hardening of soil. J. Soil Sci. 39:163175.
Horn, R. 1993. Mechanical properties of structured unsaturated soils. Soil Technol. 6:4775.
Horn, R. and Dexter, A. R. 1989. Dynamics of soil aggregation in an irrigated desert loess. Soil Tillage Res. 13:253266.
Kooistra, M. J. and Tovey, N. K. 1994. Effects of compaction on soil microstructure. Pages 91111 in Soane, B. D. and van Ouwerkerk, C., eds. Soil compaction in crop production: Developments in agricultural engineering. Amsterdam Elsevier.
Kouwenhoven, J. K. and Terpstra, R. 1979. Sorting action of tines and tine like tools in the field. J. Agric. Eng. Res. 24:95113.
Kurstjens, D. A. G. and Perdok, U. D. 2000. The selective soil covering mechanism of weed harrows on sandy soil. Soil Tillage Res. 55:193206.
McKyes, E. and Maswaure, J. 1997. Effect of design parameters on flat tillage tools on loosening of a clay soil. Soil Tillage Res. 43:195204.
Michel, J., Fornstrom, K. J., and Boreli, J. 1985. Energy requirements for two tillage systems for irrigated sugar beets, dry beans and corn. Trans. ASAE 28:17311735.
Milberg, P., Andersson, L., and Noronha, A. 1996. Seed germination after short-duration light exposure: Implications for the photo-control of weeds. J. Appl. Ecol. 33:14691478.
Mohler, C. L. 2001. Mechanical management of weeds. Pages 139209 in Liebman, M., Mohler, C. L. and Staver, C. P., eds. Ecological management of agricultural weeds. New York Cambridge University Press.
Mohler, C., DiTommaso, A., and Joslin, K. R. M. 2000. The effect of soil tilth on weed control by cultivation. Toward Sustainability Foundation Report. Accessed November 3, 2009.
Mullins, C. E., Young, I. M., Bengough, A. G., and Ley, G. J. 1987. Hard-setting soils. Soil Use Manag. 3:7983.
Parker, P. M. 2008. The 2009–2014 world outlook for farm front and rear mounted corn- and cotton-type shank and sweep cultivators. San Diego, CA ICON Group International. 202 p.
Pons, T. L. 1992. Seed responses to light. Pages 259284 in Fenner, M., ed. Seeds: The ecology of regeneration in plant communities. Wallingford, UK CAB International.
Pullen, D. W. M. and Cowell, P. A. 1997. An evaluation of the performance of mechanical weeding mechanisms for use in high speed inter-row weeding of arable crops. J. Agric. Eng. Res. 67:2734.
Rasmussen, J. 1992. Testing harrows for mechanical control of annual weeds in agricultural crops. Weed Res. 32:267274.
Rasmussen, J. 1993. Can high densities of competitive weeds be controlled efficiently by harrowing or hoeing in agricultural crops? Pages 8589 in Communications of the 4th International Conference I.F.O.A.M. France Non-Chemical Weed Control.
Rasmussen, J., Norremark, M., and Bibby, B. M. 2007. Assessment of leaf cover and crop soil cover in weed harrowing research using digital images. Weed Res. 47:299310.
Roberts, H. A. and Dawkins, P. A. 1967. Effect of cultivation on the numbers of viable weed seeds in the soil. Weed Res. 7:290301.
Ryan, M., Duh, S., Wilson, D., and Hepperly, P. 2007. The skinny on a big problem…weeds. Accessed September 23, 2009.
Terpstra, R. and Kouwenhoven, J. K. 1981. Inter-row and intra-row weed control with a hoe ridger. J. Agric. Eng. Res. 26:127134.
Tillet, N. D., Hague, T., Grundy, A. C., and Dedousis, A. P. Biosyst. Eng. Mechanical within-row weed control for transplanted crops using computer vision. 99:171178.
Toukura, Y., Devee, E., and Hongo, A. 2006. Uprooting and shearing resistance in the seedlings of four weedy species. Weed Biol. Manag. 6:3543.
Upadhyaya, S. K., Williams, T. H., Kemble, L. J., and Collins, N. E. 1984. Energy requirements for chiseling in coastal plain soils. Trans. ASAE 27:16431649.
Van der Weide, R. and Kurstjens, D. 1996. Plant morphology and selective harrowing., Pages 11 in Physical Weed Control, 2nd EWRS Workshop.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed