Skip to main content Accessibility help

Behavior of Dinitroaniline Herbicides in Plants

  • Arnold P. Appleby (a1) and Bernal E. Valverde (a1)


Dinitroaniline herbicides are absorbed readily by roots and emerging shoots, but shoot exposure is more phytotoxic. Translocation within the plant varies by specific herbicide but commonly is minor. Dinitroaniline herbicides injure plants by binding to tubulin, a dimer protein in the ceil that polymerizes to form microtubules (MTs). MTs form the major part of the mitotic apparatus, including spindle fibers, which enable chromosomes to separate during cell division. Dinitroaniline herbicides prevent tubulin from polymerizing into MTs, thus arresting mitosis. This leads to abnormal cells with more than the normal complement of chromosomes and, frequently, lobed nuclei. MTs also are responsible for orienting cell wall microfibrils in such a way that they prevent lateral enlargement of cells. Treatment with dinitroaniline herbicides leads to disorientation of the microfibrils, leading to one of the common symptoms—spherical cells instead of rectangular ones. Studies on the metabolism of trifluralin in plants have shown that amination, dealkylation, and cyclization all can occur. However, metabolites often amount to a small percentage of the original herbicide. In general, trifluralin seems quite stable within the plant.



Hide All
1. Alder, E. F., Wright, W. L., and Soder, G. F. 1960. Control of seedling grasses in turf with diphenylacetonitrile and a substituted dinitroaniline. Proc. North Cent. Weed Control Conf. 17:2324.
2. Alsop, W. R., and Moreland, D. E. 1975. Effects of herbicides on the light-activated magnesium-dependent ATPase of isolated spinach (Spinacia oleracea L.) chloroplasts. Pestic. Biochem. Physiol. 5.163170.
3. Ashton, F. M., and Crafts, A. S. 1981. Mode of action of herbicides. John Wiley & Sons, New York.
4. Bajer, A. S., and Mole-Bajer, J. 1986. Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubles. Ann. N.Y. Acad. Sci. 446:767784.
5. Barrentine, W. L., and Warren, G. F. 1971. Shoot zone activity of trifluralin and nitralin. Weed Sci. 19:3741.
6. Bartles, P. G., and Hilton, J. L. 1973. Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pestic. Biochem. Physiol. 3:462472.
7. Bayer, D. E., Foy, C. L., Mallory, T. E., and Cutter, E. G. 1967. Morphological and histological effects of trifluralin on root development. Am. J. Bot. 54:945952.
8. Bobak, M. 1985. Ultrastructural changes of the nucleolus in meristematic cells of primary roots of the horse-bean (Vicia faba L.) after trifluralin application. Acta Fac. Rerum Nat. Univ. Comeninae Physiol. Plant. 21:1722.
9. Brown, D. L., Stearns, M. E., and Macrae, T. H. 1982. Microtubule organizing centres. p. 5583 in Lloyd, C. W. The cytoskeleton in plant growth and development. Academic Press, London.
10. Bryan, J. 1974. Microtubules. Bioscience 24:701711.
11. Bucholtz, D. L., and Lavy, T. L. 1983. Alachlor and trifluralin effects on nutrient uptake in oats and soybeans. Agron. J. 71:2426.
12. Clayton, L. 1985. The cytoskeleton and the plant cell cycle. p. 113131 in Bryant, J. A. and Francis, D., eds. The Cell Division Cycle in Plants. Cambridge University Press, Cambridge.
13. Dawson, P. J., and Lloyd, C. W. 1985. Identification of multiple tubulins in taxol microtubles purified from carrot suspension cells. EMBO J. 4:24512455.
14. de Duve, C. 1984. A guided tour of the living cell. Scientific American Books, Inc., New York.
15. Derr, J. F., and Monaco, T. J. 1982. Ethalfluralin activity in cucumber (Cucumis sativus). Weed Sci. 30:498502.
16. Dustin, P. 1984. Microtubules. Springer-Verlag New York, Inc., New York.
17. Eleftheriou, E. P. 1987. Microtubules and cell wall development in differentiating protophloem sieve elements of Triticum aestivum L.J. Cell Sci. 87:595597.
18. Gentner, W. A., and Burk, L. G. 1968. Gross morphological and cytological effects of nitralin on corn roots. Weed Sci. 16:259260.
19. Golab, T., Herberg, R. J., Parka, S. J., and Tepe, J. B. 1967. Metabolism of carbon-14 trifluralin in carrots. J. Agric. Food Chem. 15:638641.
20. Golab, T., Herberg, R. J., Gramlich, J. V., Raun, A. P., and Probst, G. W. 1970. Fate of benefin in soils, plants, artificial rumen fluid, and the ruminant animal. J. Agric. Food Chem. 18:838844.
21. Gull, K., Hussey, P. J., Sasse, R., Schneider, A., Seebek, T., and Sherwin, T. 1986. Tubulin isotypes: generation of diversity in cells and microtubular organelles. J. Cell Sci. Suppl. 5:243255.
22. Gunning, B. E., and Hardham, A. R. 1979. Microtubules and morphogenesis in plants. Endeavour 3:112117.
23. Hacskaylo, J., and Amato, V. A. 1968. Effect of trifluralin on roots of corn and cotton. Weed Sci. 16:513515.
24. Hatzios, K. K., and Penner, D. 1982. Metabolism of herbicides in higher plants. Burgess Publ. Co., Minneapolis.
25. Hawxby, K., and Basler, E. 1976. Effects of temperature on absorption and translocation of profluralin and dinitramine. Weed Sci. 24:545548.
26. Heath, M. C., Ashford, R., and McKercher, R. B. 1984. Trifluralin and trial late retention by imbibed tame oat (Avena sativa) caryopses. Weed Sci. 32:251257.
27. Hertel, C., and Marme, D. 1983. Herbicides and fungicides inhibit Ca2+ uptake by plant mitochondria: a possible mechanism of action. Pestic. Biochem. Physiol. 19:282290.
28. Hertel, C., Quader, H., Robinson, D. G., and Marme, D. 1980. Antimicrotubular herbicides and fungicides affect Ca2+ transport in plant mitochondria. Planta 149:336340.
29. Hess, F. D. 1979. The influence of the herbicide trifluralin on flagellar regeneration in Chlamydomonas . Exp. Cell Res. 119:99109.
30. Hess, F. D. 1983. Mode of action of herbicides that affect cell division. p. 7984 in Miyamoto, J. and Kearney, P. C., eds. Pesticide Chemistry: Human Welfare and the Environment. Vol. 3. Mode of Action, Metabolism, and Toxicology. Pergamon Press, Oxford.
31. Hess, F. D., and Bayer, D. 1974. The effect of trifluralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hirsutum O. ‘Acala’ 4–42). J. Cell Sci. 15:429441.
32. Hess, F. D., and Bayer, D. E. 1977. Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J. Cell. Sci. 24:351360.
33. Hilton, J. L., and Christiansen, M. N. 1972. Lipid contribution to selective action of trifluralin. Weed Sci. 20:290294.
34. Hussey, P. J., and Gull, K. 1985. Multiple isotypes of a- and b-tubulin in the plant Phaseolus vulgaris . FEBS Lett. 181:113118.
35. Jackson, W. T., and Stetler, D. 1973. Regulation of mitosis. IV. An in vitro and ultrastructural study of effects of trifluralin. Am. J. Bot. 51.15131518.
36. Jacques, G. L., and Harvey, R. G. 1979. Dinitroaniline herbicide phytotoxicity as influenced by soil moisure and herbicide vaporization. Weed Sci. 27:536539.
37. Jacques, G. L., and Harvey, R. G. 1979. Vapor absorption and translocation of dinitroaniline herbicides in oats (Avena sativa) and peas (Pisum sativum). Weed Sci. 27:371374.
38. Johnson, K. A., and Borisy, G. G. 1975. The equilibrium assembly of microtubules in vitro. p. 119141 in Inoue, J. and Stephens, R., eds. Molecules and Cell Movement. Raven Press, New York.
39. Knake, E. L., Appleby, A. P., and Furtick, W. R. 1967. Soil incorporation and site of uptake of preemergence herbicides. Weeds 15:228232.
40. Knake, E. L., and Wax, L. M. 1968. The importance of the shoot of giant foxtail for uptake of preemergence herbicides. Weed Sci. 16:393395.
41. Kust, C. A., and Struckmeyer, B. E. 1971. Effects of trifluralin on growth, nodulation, and anatomy of soybeans. Weed Sci. 19:147152.
42. Lignowski, E. M., and Scott, E. G. 1971. Trifluralin and root growth. Plant Cell Physiol. 12:701708.
43. Lignowski, E. M., and Scott, E. G. 1972. Effect of trifluralin on mitosis. Weed Sci. 20:267270.
44. Malefyt, T. D. 1982. The effect of pendimethalin on velvetleaf (Albutilon theophrasti Medic.) and pigweed (Amaranthus spp.) growth and development. Ph.D. dissertation. Cornell Univ. in Diss. Abstr. 43:2073B.
45. Marchant, H. J. 1979. Microtubules, cell wall deposition, and determination of cell shape. Nature 278:167168.
46. Marquis, L. Y., Shimabukuro, R. H., Stolzenberg, G. E., Feil, V. J., and Zaylskie, R. G. 1979. Metabolism and selectivity of fluchloralin in soybean roots. J. Agric. Food Chem. 27:11481156.
47. Merezhinskii, Y. G., and Sharmankin, S. V. 1986. Assembly of microtubules in vitro in the presence of trifluralin. Fiziol. Biokhim. Kul'T. Rast. 18:299303.
48. Millhollon, R. W. 1978. Toxicity of soil-incoroporated trifluralin to johnsongrass (Sorghum halepense) rhizomes. Weed Sci. 26:171174.
49. Mizuno, K., Sek, R., Perkin, J., Wick, S., Duniec, J., and Gunning, B. 1985. Monoclonal antibodies specific to plant tubulin. Protoplasma 129:100108.
50. Morejohn, L. C., Bureau, T. E., and Fosket, D. E. 1983. Oryzalin binds to plant tubulin (T) and inhibits taxol-induced microtubule (MT) assembly in vitro. J. Cell Biol. 97:211a.
51. Morejohn, L. C., Bureau, T. E., Mole-Bajer, J., Bajer, A. S., and Fosket, D. E. 1987. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172:252264.
52. Morejohn, L. C., Bureau, T. E., Tocchi, L. P., and Fosket, D. E. 1984. Tubulins from different higher plant species are immunologically nonidentical and bind colchicine differentially. Proc. Nat. Acad. Sci. 81:14401444.
53. Morejohn, L. C., Bureau, T. E., Tocchi, L. P., and Fosket, D. E. 1987. Resistance of Rosa microtubule polymerization to colchicine results from a low-affinity interaction of colchicine and tubulin. Planta 170:230241.
54. Morejohn, L. C., and Fosket, D. E. 1984. Inhibition of plant microtubule polymerization in vitro by the phosphoric amide herbicide aminoprophos-methyl. Science 224:874876.
55. Morejohn, L. C., and Fosket, D. E. 1984. Taxol-induced rose microtubule polymerization in vitro and its inhibition by colchicine. J. Cell Biol. 99:141147.
56. Morejohn, L. C., and Fosket, D. E. 1986. Tubulins from plants, fungi and protists. p. 257329 in Shay, J. W., ed. Cell and Molecular Biology of the Cytoskeleton. Plenum Press, New York.
57. Moreland, D. E., Farmer, F. S., and Hussey, G. G. 1972. Inhibition of photosynthesis and respiration by substituted 1,6-dinitroaniline herbicides. I. Effects on chloroplast and mitochondrial activities. Pestic. Biochem. Physiol. 2:342353.
58. Moreland, D. E., Farmer, F. S., and Hussey, G. G. 1972. Inhibition of photosynthesis and respiration by substituted 2,6-dinitroaniline herbicides. II. Effects on responses in excised plant tissues and treated seedlings. Pestic. Biochem. Physiol. 2:354363.
59. Ndon, B. A., and Harvey, R. G. 1981. Effects of seed and root lipids on the susceptibility of plants to trifluralin and oryzalin. Weed Sci. 29:420425.
60. Negi, N. S., Funderburk, H. H. Jr., Schultz, D. P., and Davis, D. E. 1968. Effect of trifluralin and nitralin on mitochondrial activities. Weed Sci. 16:8385.
61. Norton, J. A., Walter, J. P. Jr., and Storey, J. B. 1970. The effect of herbicides on lateral roots and nut quality of pecans. Weed Sci. 18:520522.
62. Okamura, S. 1980. Binding of colchicine to a soluble fraction of carrot cells grown in suspension culture. Planta 149:350354.
63. Olson, B. M., McKercher, R. B., and Halstead, E. H. 1984. Effects of trifluralin on root morphology and mineral status of wheat (Triticum aestivum) seedlings. Weed Sci. 32:382387.
64. Parka, S. J., and Soper, O. F. 1977. The physiology and mode of action of the dinitroaniline herbicides. Weed Sci. 25:7987.
65. Parker, C. 1966. The importance of shoot entry in the action of herbicides applied to the soil. Weeds 14:117121.
66. Penner, D., and Early, R. W. 1972. Action of trifluralin on chromatin activity in corn and soybean. Weed Sci. 20:364366.
67. Prendeville, G. N., Eshel, Y., Schreiber, M. M., and Warren, G. F. 1967. Site of uptake of soil-applied herbicides. Weed Res. 7:316322.
68. Quader, H., and Filner, P. 1980. The action of antimitotic herbicides on flagellar regeneration in Chlamydomonas reinhardtii: a comparision with the action of colchicine. Eur. J. Cell Biol. 21:301304.
69. Quarder, H., Herth, W., Ryser, U., and Schnepf, E. 1987. Cytoskeletal elements in cotton seed hair development in vitro: their possible regulatory role in cell wall organization. Protoplasma 137:5662.
70. Rahman, A., and Ashford, R. 1970. Selective action of trifluralin for control of green foxtail in wheat. Weed Sci. 18:754759.
71. Robinson, S. J., Yocum, C. F., and Ikuma, H. 1977. Inhibition of chloroplast electron transport reactions by trifluralin and diallate. Plant Physiol. 60:840844.
72. Sawamura, S., and Jackson, W. T. 1968. Cytological studies in vivo of picloram, pyriclor, trifluralin, 2,3,6-TBA, and nitralin. Cytologia 33:545554.
73. Schultz, D. P., Funderburk, H. H. Jr., and Negi, N. S. 1968. Effect of trifluralin on growth, morphology, and nucleic acid synthesis. Plant Physiol. 43:265273.
74. Schweizer, E. E. 1970. Aberrations in sugarbeet roots as induced by trifluralin. Weed Sci. 18:131134.
75. Somaskova, M., Bobak, M., and Varkonda, S. 1985. Ultrastructural changes of chloroplasts in leaves of Vicia faba L. induced by trifluralin. Acta Fac. Rerum Nat. Univ. Comenianae Physiol. Plant. 21:2326.
76. Standifer, L. C. Jr., and Thomas, C. H. 1965. Response of johnsongrass to soil-incorporated trifluralin. Weeds 13:302306.
77. Strachan, S. D., and Hess, F. D. 1983. The biochemical mechanism of action of the dinitroaniline herbicide oryzalin. Pestic. Biochem. Physiol. 20:131150.
78. Strang, R. H., and Rogers, R. L. 1971. A microradioautographic study of 14C-trifluralin absorption. Weed Sci. 19:363369.
79. Struckmeyer, B. E., Binning, L. K., and Harvey, R. G. 1976. Effect of dinitroaniline herbicides in a soil medium on snap beans and soybean. Weed Sci. 24:366369.
80. Trewavas, A. J. 1985. Growth substances, calcium and the regulation of cell division. p. 133156 in Bryant, J. A. and Francis, D., eds. The Cell Division Cycle in Plants. Cambridge University Press, Cambridge.
81. Upadhyaya, M. K., and Nooden, L. D. 1977. Mode of dinitroaniline herbicide action. I. Analysis of the colchicine-like effects of dinitroaniline herbicides. Plant Cell Physiol. 18:13191330.
82. Upadhyaya, M. K., and Nooden, L. D. 1978. 14C-oryzalin binding in the roots of a resistant and a sensitive species. Plant Physiol. 61 (Suppl.):56.
83. Upadhyaya, M. K., and Nooden, L. D. 1980. Mode of dinitroaniline herbicide action. II. Characterization of [14C] oryzalin uptake and binding. Plant Physiol. 66:10481052.
84. Upadhyaya, M. K., and Nooden, L. D. 1987. Comparison of [14C] oryzalin uptake in root segments of a sensitive and a resistant species. Ann. Bot. 59:483485.
85. Vandeventer, J. W., Meggitt, W. F., and Penner, D. 1982. Morphological and physiological variability in black nightshade (Solanum spp.). Pestic. Sci. 13:257262.
86. Vandeventer, J. W., Meggitt, W. F., and Penner, D. 1986. Absorption, translocation, and metabolism of ethalfluralin and trifluralin in Solanum spp. Pestic. Sci. 17:380384.
87. Vaughan, M. A., and Vaughn, K. C. 1987. Taxol treatment of Eleusine indicates hyper-stabilized tubulin may cause dinitroaniline resistance. Plant Physiol. 83(Suppl.):643.
88. Vaughn, K. C. 1986. Cytological studies of dinitroaniline-resistant Eleusine . Pestic. Biochem. Physiol. 26:6674.
89. Vaughn, K. C. 1986. Dinitroaniline resistance in goosegrass [Eleusine indica (L.)Gaertn.] is due to an altered tubulin. Abstr. Weed Sci. Soc. Am. 26:77.
90. Vaughn, K. C., and Koskinen, W. C. 1987. Effects of trifluralin metabolites on goosegrass (Elusine indica) root meristems. Weed Sci. 35:3644.
91. Wang, B., Grooms, S., and Frans, R. E. 1974. Response of soybean mitochondria to substituted dinitroaniline herbicides. Weed Sci. 22:6465.
92. Willis, M. D., and Putnam, A. R. 1986. Absorption and translocation of 14C-ethalfluralin in cucumber (Cucumis sativus). Weed Sci. 34:1316.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed