Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T21:37:34.948Z Has data issue: false hasContentIssue false

Confirmation, Characterization, and Management of Glyphosate-Resistant Ragweed Parthenium (Parthenium hysterophorus L.) in the Everglades Agricultural Area of South Florida

Published online by Cambridge University Press:  20 January 2017

Jose V. Fernandez*
Affiliation:
University of Florida, Agronomy Department, Gainesville, FL 32611
Dennis C. Odero
Affiliation:
University of Florida, Everglades Research and Education Center, Belle Glade, FL 33430
Gregory E. MacDonald
Affiliation:
University of Florida, Agronomy Department, Gainesville, FL 32611
Jason Ferrell
Affiliation:
University of Florida, Agronomy Department, Gainesville, FL 32611
Lyn A. Gettys
Affiliation:
University of Florida, Fort Lauderdale Research and Education Center, Fort Lauderdale, FL 33314
*
Corresponding author's E-mail: josevfernandez@ufl.edu.

Abstract

Growers have observed lack of control of ragweed parthenium with glyphosate at 0.84 kg ae ha−1 used for weed control in noncrop areas and fallow fields in the Everglades Agricultural Area (EAA) of South Florida. Therefore, studies were conducted to (1) confirm and characterize the level of glyphosate resistance in ragweed parthenium from the EAA, (2) determine if reduced absorption or translocation is the mechanism of resistance of ragweed parthenium to glyphosate, and (3) evaluate the efficacy of POST herbicides commonly used in cultivated and noncrop areas for broadleaf weed control on flowering ragweed parthenium at the full and half labeled rate. A dose-response bioassay was used to determine the response of the rosette ragweed parthenium biotype from the EAA (resistant) and a susceptible biotype from Stoneville, MS, to glyphosate. The bioassay showed that the resistant biotype was 40- to 43-fold less sensitive to glyphosate when compared to the susceptible biotype. There was no significant difference in glyphosate absorption or translocation from the treated leaf to the rest of the plant 168 h after treatment between resistant and susceptible biotypes. This shows that absorption or translocation is not a mechanism of glyphosate resistance by ragweed parthenium. Saflufenacil + dimethenamid-P and hexazinone provided rapid and complete control of flowering ragweed parthenium 3 wk after treatment (WAT). Aminocyclopyrachlor + chlorsulfuron and aminopyralid at the full and the half label rates provided 100% control of ragweed parthenium by 9 WAT. Clopyralid, 2,4-D amine, and glufosinate at the full label rate provided 89 to 98% control of ragweed parthenium 9 WAT. Control of ragweed parthenium 9 WAT was < 75% with flumioxazin, fomesafen, glyphosate, imazapic, imazethapyr, mesotrione, oxyfluorfen, and paraquat, irrespective of use rate.

Productores han observado la falta de control de Parthenium hysterophorus con glyphosate a 0.84 kg ae ha−1 usado para el control de malezas en áreas sin cultivos y en campos en barbecho en el Área Agrícola de los Everglades (EAA) en el sur de Florida. Por esta razón, se realizaron estudios para (1) confirmar y caracterizar el nivel de resistencia a glyphosate en P. hysterophorus en el EAA, (2) determinar si la reducción en la absorción o la translocación es el mecanismo de resistencia a glyphosate en P. hysterophorus, y (3) evaluar la eficacia de herbicidas POST comunes en áreas cultivadas y sin cultivos para el control de malezas de hoja ancha sobre P. hysterophorus en floración usando la mitad de la dosis de etiqueta y la dosis completa. Se realizó un bioensayo de respuesta a dosis para determinar la respuesta a glyphosate del biotipo de P. hysterophorus proveniente de EAA (resistente) y un biotipo susceptible proveniente de Stoneville, Mississippi, ambos en estado de roseta. El bioensayo mostró que el biotipo resistente fue 40 a 43 veces menos sensible a glyphosate cuando se comparó con el biotipo susceptible. No hubo diferencias significativas entre el biotipo resistente y el susceptible en la absorción o translocación de glyphosate desde la hoja tratada al resto de la planta, 168 h después del tratamiento. Esto demuestra que la absorción o translocación no es el mecanismo de resistencia de P. hysterophorus. Saflufenacil + dimethenamid-P y hexazinone brindaron un control rápido y completo de P. hysterophorus en estado de floración 3 semanas después del tratamiento (3 WAT). Aminocyclopyrachlor + chlorsulfuron y aminopyralid a la dosis media y la completa brindaron 100% de control de P. hysterophorus a 9 WAT. Clopyralid, 2,4-D amine, y glyphosate a la dosis completa brindaron 89 a 98% de control de P. hysterophorus a 9 WAT. El control de P. hysterophorus a 9 WAT fue < 75% con flumioxazin, fomesafen, glyphosate, imazapic, imazethapyr, mesotrione, oxyfluorfen, y paraquat, independientemente de la dosis.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baerson, SC, Rodriguez, DJ, Tran, M, Feng, Y, Biest, NA, Dill, GM (2002) Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phoshate synthase. Plant Physiol 129:12651275 Google Scholar
Bekeko, Z (2013) Effect of urea and common salt (NaCl) treated glyphosate on parthenium weed (Parthenium hysterophorus L.) at Western Hararghe zone, Ethiopia. Afr J Agric Res 8:30363041 Google Scholar
Brewer, CE, Oliver, LR (2009) Confirmation and resistance mechanism in glyphosate-resistant common ragweed (Ambrosia artemisiifolia) in Arkansas. Weed Sci 57:567573 Google Scholar
Bryson, CT, DeFelice, MS, eds (2009) Weeds of the South. Athens, GA: University of Georgia Press. P 395 Google Scholar
Dhileepan, K (2012) Reproductive variation in naturally occurring populations of the weed Parthenium hysterophorus (Asteraceae) in Australia. Weed Sci 60:571576 Google Scholar
Enloe, SF, Lym, FG, Wilson, R, Westra, P, Nissen, S, Beck, G, Moeching, M, Peterson, V, Masters, RA, Halstvedt, M (2007) Canada thistle (Cirsium arvense) control with aminopyralid in range, pasture, and noncrop areas. Weed Technol 21:890894 Google Scholar
Frihauf, JC, Stahlman, PW, Geier, PW (2010) Winter wheat and weed response to postemergence saflufenacil alone or in mixtures. Weed Technol 24:262268 Google Scholar
Gaines, TA, Zhang, W, Wang, D, Bukun, B, Chisholm, ST, Shaner, DL, Nissen, SC, Patzoldt, WL, Tranel, PJ, Culpepper, AS, Grey, TL, Webster, TM, Vencill, WK, Sammons, RD, Jiang, J, Preston, C, Leach, JE, Westra, P (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc Natl Acad Sci U S A 107:10291034 Google Scholar
Geier, PW, Stahlman, PW, Charvat, LD (2009) Dose response of five broadleaf weeds to saflufenacil. Weed Technol 23:313316 Google Scholar
Gomez, C (2009) Resistance mechanism of Parthenium hysterophorus L. to glyphosate. Ph.D dissertation. Valle del Cauca, Colombia: Universidad Nacional de Colombia. 203 pGoogle Scholar
Heap, I (2013) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed October 12, 2013.Google Scholar
Jasieniuk, M, Ahmad, R, Sherwood, AM, Firestone, JL, Perez-Jones, A, Lanini, WT, Mallory-Smith, C, Stednick, Z (2008) Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Sci 56:496502 Google Scholar
Jayachandra (1971) Parthenium weed in Mysore State and its control. Curr Sci 21:568569 Google Scholar
Jimenez, F, Fernandez, P, Rosario, J, Gonzalez-Torralva, De Prado R (2014) First case of glyphosate resistance in the Dominican Republic. AGRO-554. in 248th ACS National Meeting and Exposition. San Francisco, CA: American Chemical Society Google Scholar
Joshi, S (1991) Biocontrol of Parthenium hysterophorus L. Crop Prot 10:429431 Google Scholar
Khan, H, Marwat, KB, Hassan, G, Khan, MA (2012) Chemical control of Parthenium hysterophorus L. at different growth stages in non-cropped area. Pak J Bot 44:17211726 Google Scholar
Kirkwood, RC, Hetherinton, R, Reynolds, TL, Marshall, G (2000) Absorption, localization, translocation and activity of glyphosate in barnyardgrass (Echinochloa crus-galli (L) Beauv): influence of herbicide and surfactant concentration. Pest Manag Sci 56:359367 Google Scholar
Koger, CH, Reddy, KN, (2005) Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Sci 53:8489 Google Scholar
Kyser, GB, Peterson, V, Orloff, SB, Wright, SD, Ditomaso, JM (2011) Control of yellow starthistle (Centaurea solstitialis) and coast fiddleneck (Amsinckia menziesii) with aminopyralid. Invasive Plant Sci Manag 4:341348 Google Scholar
Lorraine-Colwill, DF, Powles, SB, Hawkes, TR, Hollinshead, PH, Warner, SAJ, Preston, C (2003) Investigation into the mechanism of glyphosate resistance in Lolium rigidum . Pestic Biochem Physiol 74:6272 Google Scholar
Navie, SC, McFadyen, RE, Panetta, FD, Adkins, SW (1996) The biology of Australian weeds 27. Parthenium hysterophorus L. Plant Prot Q 11:7688 Google Scholar
Navie, SC, Panetta, FD, McFadyen, RE, Adkins, SW (1998) Behaviour of buried and surface-sown seeds of Parthenium hysterophorus . Weed Res 38:335341 Google Scholar
Navie, SC, Panetta, FD, McFadyen, RE, Adkins, SW (2004) Germinable soil seedbanks of central Queensland rangelands invaded by the exotic weed Parthenium hysterophorus L. Weed Biol Manag 4:154167 Google Scholar
Nielsen, OK, Ritz, C, Streibig, JC (2004) Nonlinear mixed-model regression to analyze herbicide dose-response relationships. Weed Technol 18:3037 Google Scholar
Norsworthy, JK, Jha, P, Steckel, LE, Scott, RC (2010) Confirmation and control of glyphosate-resistant giant ragweed (Ambrosia trifida) in Tennessee. Weed Technol 24:6470 Google Scholar
Odero, DC (2012) Response of ragweed parthenium (Parthenium hysterophorus) to saflufenacil and glyphosate. Weed Technol 26:443448 Google Scholar
Pandey, DK, Palni, LMS, Joshi, SC (2003) Growth, reproduction, and photosynthesis of ragweed parthenium (Parthenium hysterophorus). Weed Sci 51:191201 Google Scholar
Perez-Jones, A, Park, K, Polge, N, Colquhoun, J, Mallory-Smith, CA (2007) Investigating the mechanism of glyphosate resistance in Lolium multiflorum . Planta 226:395404 Google Scholar
Powles, SB, Preston, C (2006) Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technol 20:282289 Google Scholar
R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria. http://www.r-project.org/. Accessed October 12, 2013Google Scholar
Rajendrudu, G, Rama Das, VS (1990) C3-like carbon isotope discrimination in C3-C4 intermediate Alternanthera and Parthenium species. Curr Sci 59:377379 Google Scholar
Reddy, KN, Bryson, CT, Burke, IC (2007) Ragweed parthenium (Parthenium hysterophorus) control with preemergence and postemergence herbicides. Weed Technol 21:982986 Google Scholar
Reed, TV, Yu, J, McCullough, PE (2013) Aminocyclopyrachlor efficacy for controlling Virginia buttonweed (Diodia virginiana) and smooth crabgrass (Digitaria ischaemum) in tall fescue. Weed Technol 27:488491 Google Scholar
Ritz, C, Streibig, JC (2005) Bioassay analysis using R. J Stat Software 12:122 Google Scholar
Sandberg, CL, Meggitt, WF, Penner, D (1980) Absorption, translocation and metabolism of 14C-glyphosate in several weed species. Weed Res 20:195200 Google Scholar
Schuster, WS, Monson, RK (1990) An examination of the advantages of C3–C4 intermediate photosynthesis in warm environments. Plant Cell Environ 13:903912 Google Scholar
Seefeldt, SS, Jensen, JE, Feurst, EP (1995) Log-logistic analysis of herbicide dose-response relationship. Weed Technol 9:218227 Google Scholar
Shaner, DL, Lindenmeyer, RB, Ostlie, MH (2012) What have the mechanisms of resistance to glyphosate taught us? Pest Manag Sci 68:39 Google Scholar
Singh, S, Yadav, A, Balyan, RS, Malik, RK, Singh, M (2004) Control of ragweed parthenium (Parthenium hysterophorus) and associated weeds. Weed Technol 18:658664 Google Scholar
Tamado, T, Milberg, P (2004) Control of parthenium (Parthenium hysterophorus) in grain sorghum (Sorghum bicolor) in the smallholder farming system in eastern Ethiopia. Weed Technol 18:100105 Google Scholar
Tamado, T, Schütz, W, Milberg, P (2002) Germination ecology of the weed Parthenium hysterophorus in eastern Ethiopia. Ann Appl Biol 140:263270 Google Scholar
[USDA-NRCS] U.S. Department of Agriculture–Natural Resources Conservation Service (2013) Plants Profile: Parthenium hysterophorus L. http://plants.usda.gov/core/profile?symbol=PAHY. Accessed October 12, 2013Google Scholar
VanGessel, MJ (2001) Glyphosate-resistant horseweed from Delaware. Weed Sci 49:703705 Google Scholar
Wakelin, AM, Preston, C (2006) Inheritance of glyphosate resistance in several populations of rigid ryegrass (Lolium rigidum) from Australia. Weed Sci 54:212219 Google Scholar
Walker, ER, Oliver, LR (2008) Translocation and absorption of glyphosate in flowering sicklepod (Senna obtusifolia). Weed Sci 56:338343 Google Scholar
Westhoven, AM, Kruger, GR, Gerber, CK, Stachler, JM, Loux, MM, Johnson, WG (2008) Characterization of selected common lambsquarters (Chenopodium album) biotypes with tolerance to glyphosate. Weed Sci 56:685691 Google Scholar
Wilson, RG, Orloff, SB (2008) Winter annual weed control with herbicides in alfalfa–orchardgrass mixtures. Weed Technol 22:3033 Google Scholar
Wright, AL, Hanlon, EA, Rice, RW (2012) Managing pH in the Everglades Agricultural Soils. http://edis.ifas.ufl.edu/ss500. Accessed May 5, 2014Google Scholar
Yerka, MK, Wiersma, AT, Lindenmayer, RB, Westra, P, Johnson, WG, de Leon, N, Stoltenberg, DE (2013) Reduced translocation is associated with tolerance of common lambsquarters (Chenopodium album) to glyphosate. Weed Sci 61:353360 Google Scholar