Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T05:43:31.038Z Has data issue: false hasContentIssue false

Delayed Glyphosate Application for No-Till Fallow in the Driest Region of the Inland Pacific Northwest

Published online by Cambridge University Press:  20 January 2017

Larry K. Lutcher*
Affiliation:
Department of Crop and Soil Science, Oregon State University–Morrow County Office, Heppner, OR 97836

Abstract

Farmers typically use three applications of glyphosate to control weeds in no-till fallow. Some are now experimenting with an unconventional modification to this widely used approach. This modified approach is based on an intentional delay in the time of the first spraying. Farmers delay their first spraying because they want to rely on competition from winter annual grasses to suppress the growth of Russian thistle and eliminate the need for a third application. Optimism for this kind of weed-control program is tempered by concerns related to soil water storage. The objective of this research was to evaluate effects of delayed control of downy brome and volunteer winter wheat on the plant-available water content of, and loss of water from, no-till fallow. Treatments, applied to plots arranged in a randomized complete block design with four replications, were distinguished by the time of the initial glyphosate application. The initial early-season treatment was applied as soon as possible after emergence of downy brome and volunteer winter wheat. Initial mid-season and late-season treatments were applied 4 and 6 wk later, respectively. The amount of plant-available water in the soil profile ranged from 71.8 to 153.7 mm in May and 16.5 to 80.9 mm in September. Water loss was usually minimized in plots treated with the initial early-season treatment. An exception to this trend occurred at a site where the density of downy brome and volunteer winter wheat was greater than average. Abated water loss from the initial late-season treatment, at this site, may have been a consequence of reduced evaporation caused by a decrease in near-surface wind speed and deflection of solar radiation away from soil. Estimated impacts of water loss on grain yield of winter wheat, produced the year after fallow, range from 269 to 600 kg ha−1.

Los productores típicamente usan tres aplicaciones de glyphosate para controlar malezas en barbecho con labranza cero. Algunos están actualmente experimentando con una modificación no-convencional a esta práctica ampliamente usada. Esta modificación está basada en un atraso intencional en el momento de la primera aplicación. Los productores atrasan su primera aplicación porque ellos quieren beneficiarse de la competencia de las gramíneas anuales de invierno para suprimir el crecimiento de Salsola tragus y así eliminar la necesidad de una tercera aplicación. El optimismo por este tipo de control de malezas se enfrenta a las preocupaciones relacionadas al almacenaje de agua en el suelo. El objetivo de esta investigación fue evaluar los efectos del retraso en el control de Bromus tectorum y el trigo de invierno voluntario sobre el contenido de agua de suelo disponible para las plantas, y la pérdida de agua en barbechos bajo labranza cero. Los tratamientos fueron distinguidos por el momento de la aplicación inicial de glyphosate y fueron arreglados en un diseño de bloques completos aleatorizados con cuatro repeticiones. El tratamiento inicial temprano durante la temporada fue aplicado tan pronto fue posible después de la emergencia de B. tectorum y del trigo de invierno voluntario. Los tratamientos iniciales a la mitad y tarde durante la temporada de crecimiento fueron aplicados 4 y 6 semanas después, respectivamente. La cantidad de agua disponible para las plantas en el perfil del suelo varió de 71.8 a 153.7 mm en Mayo y de 16.5 a 80.9 mm en Septiembre. La pérdida de agua fue usualmente minimizada en parcelas tratadas con el tratamiento inicial temprano en la temporada. Una excepción a esta tendencia ocurrió en un sitio donde la densidad de B. tectorum y del trigo de invierno voluntario fue mayor al promedio. La reducción en la pérdida de agua en el tratamiento de la aplicación inicial temprano en la temporada, en este sitio, podría haber sido una consecuencia de una evaporación reducida causada por una menor velocidad del viento cerca de la superficie del suelo y un cambio en la incidencia solar sobre el suelo. Los impactos de la pérdida de agua sobre el rendimiento de grano del trigo de invierno, producidos un año después del barbecho, variaron entre 260 y 600 kg ha−1.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Aaron G. Hager, University of Illinois.

References

Literature Cited

Ball, DA, Frost, SM, Gitelman, AI (2004) Predicting timing of downy brome (Bromus tectorum) seed production using growing degree days. Weed Sci 52:518524 Google Scholar
Cook, RJ, Veseth, RJ (1991) Wheat Health Management. St. Paul, MN: American Phytopathological Society Google Scholar
Didon, UME, Kolseth, AK, Widmark, D, Persson, P (2014) Cover crop residues—effects on germination and early growth of annual weeds. Weed Sci 62:294302 Google Scholar
Dilpreet, SR, Ball, DA, Yenish, JP, Burke, IC (2011) Light-activated, sensor-controlled sprayer provides effective postemergence control of broadleaf weeds in fallow. Weed Technol 25:447453 Google Scholar
Dwyer, DD, Yohannis, KW (1972) Germination, emergence, water use, and production of Russian thistle (Salsola kali L.). Agron J 64:5255 Google Scholar
Fenster, CR, Wicks, GA (1982) Fallow systems for winter wheat in western Nebraska. Agron J 74:913 Google Scholar
Gardner, WH (1986) Water content. Pages 493544 in Klute, A, ed. Methods of Soil Analysis. Part 1, 2nd edn. Agron Monogr 9. Madison, WI: ASA and SSSA Google Scholar
Greb, BW, Zimdahl, RL (1980) Ecofallow comes of age in the Central Great Plains. J Soil Water Conserv 35:230233 Google Scholar
Hammel, JE, Papendick, RI, Campbell, GS (1981) Fallow tillage effects on evaporation and seedzone water content in a dry summer climate. Soil Sci Soc Am J 45:10161022 Google Scholar
Hoefer, RH, Wicks, GA, Burnside, OC (1981) Grain yields, soil water storage, and weed growth in a winter wheat–corn–fallow rotation. Agron J 73:10661071 Google Scholar
Ireland, TM (2003) Vegetation Management with Nonselective Herbicides during Fallow in Conservation Tillage, Dryland Wheat (Triticum aestivum) Cropping Systems in the Pacific Northwest. . Moscow, ID: University of Idaho Google Scholar
Jemmett, ED, Thill, DC, Rauch, TA, Ball, DA, Frost, SM, Bennett, LH, Yenish, JP, Rood, RJ (2008) Rattail fescue (Vulpia myuros) control in chemical fallow cropping systems. Weed Technol 22:435441 Google Scholar
Juergens, LA, Young, DL, Schillinger, WF, Hinman, HR (2004) Economics of alternative no-till spring crop rotations in Washington's wheat-fallow region. Agron J 96:154158 Google Scholar
LeBlanc, DC (2004) Tukey's honestly significant difference test. Pages 261262 in Weaver, S, ed. Statistics: Concepts and Applications for Science. Sudbury, MA: Jones and Bartlett Google Scholar
Leggett, GE (1959) Relationships between wheat yield, available moisture and available nitrogen in eastern Washington dryland areas. Pullman, WA;Wash Agric Exp Stn Bull 609. Pp 116 Google Scholar
Lemon, ER (1956) The potentialities for decreasing soil moisture evaporation loss. Soil Sci Soc Am Proc 20:120125 Google Scholar
Lindstrom, MJ, Koehler, FE, Papendick, RI (1974) Tillage effects on fallow water storage in the eastern Washington dryland region. Agron J 66:312316 Google Scholar
Lutcher, LK, Schillinger, WF, Wuest, SB, Christensen, NW, Wysocki, DJ (2010). Phosphorus fertilization of late-planted winter wheat into no-till fallow. Agron J 102:868874 Google Scholar
Nesse, PE, Ball, DA (1994) Downy brome. PNW 474, October. A Pacific Northwest Extension Publication. University of Idaho Cooperative Extension System, Oregon State University Extension Service, and the Washington State University Cooperative Extension SystemGoogle Scholar
Nielsen, DC, Vigil, MF (2005) Legume green fallow effect on soil water content at wheat planting and wheat yield. Agron J 97:684689 Google Scholar
Oveson, MM, Appleby, AP (1971) Influence of tillage management in a stubble mulch fallow-winter wheat rotation with herbicide weed control. Agron J 63:1920 Google Scholar
Papendick, RI (1998) Farming with the Wind II: Wind Erosion and Air Quality on the Columbia Plateau and Columbia Basin. Pullman, WA: Washington State University College of Agricultural, Human, and Natural Resource Sciences Special Rep XB1042. 48 pGoogle Scholar
Schillinger, WF (2007) Ecology and control of Russian thistle (Salsola iberica) after spring wheat harvest. Weed Sci 55:381385 Google Scholar
Schillinger, WF, Bolton, FE (1993) Fallow water storage in tilled vs. untilled soils in the Pacific Northwest. J Prod Agric 6:267269 Google Scholar
Schillinger, WF, Schofstoll, SE, Alldredge, JR (2008) Available water and wheat grain yield relations in a Mediterranean climate. Field Crops Res 109:4549 Google Scholar
Schillinger, WF, Young, FL (2000) Soil water use and growth of Russian thistle after wheat harvest. Agron J 92:167172 Google Scholar
Schillinger, WF, Young, FL (2004) Cropping systems research in the world's driest rainfed region. Agron J 96:11821187 Google Scholar
Smika, DE, Wicks, GA (1968) Soil water storage during fallow in the Central Great Plains as influenced by tillage and herbicide treatments. Soil Sci Soc Am Proc 32:591595 Google Scholar
Smiley, RW (2009) Root–lesion nematodes reduce yield of intolerant wheat and barley. Agron J 101:13221335 Google Scholar
Smiley, RW, Gourlie, JA, Easley, SA, Patterson, LM, Whittaker, RG (2005) Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Dis 89:595604 Google Scholar
Wicks, GA, Smika, DE (1973) Chemical fallow in a winter wheat–fallow rotation. Weed Sci 21:97102 Google Scholar
Wiese, AF (1960) Effect of tansy mustard (Descurainia intermedia) on moisture storage during fallow. Weeds 8:683685 Google Scholar
Wuest, SB, Schillinger, WF (2011) Evaporation from high residue no-till versus tilled fallow in a dry summer climate. Soil Sci Soc Am J 75:15121518 Google Scholar
Young, FL (1986) Russian thistle (Salsola iberica) growth and development in wheat (Triticum aestivum). Weed Sci 34:901905 Google Scholar
Young, FL, Alldredge, JR, Pan, WL, Hennings, C (2015) Comparisons of annual no-till spring cereal cropping systems in the Pacific Northwest. Crop, Forage, and Turfgrass Management. Pp 17 Google Scholar
Young, FL, Veseth, RJ, Thill, DC, Schillinger, WF, Ball, DA (1995) Managing Russian thistle under conservation tillage in crop–fallow rotations. PNW 492, November. A Pacific Northwest Extension Publication. University of Idaho Cooperative Extension System, Oregon State University Extension Service, and the Washington State University Cooperative Extension System, with cooperation from the U.S. Department of Agriculture Google Scholar