Skip to main content
×
Home
    • Aa
    • Aa

Determining Exposure to Auxin-Like Herbicides. II. Practical Application to Quantify Volatility

  • Audie S. Sciumbato (a1), James M. Chandler (a1), Scott A. Senseman (a1), Rodney W. Bovey (a2) and Ken L. Smith (a3)...
Abstract

Volatility and drift are problems commonly associated with auxin-like herbicides. Field and greenhouse studies were conducted at Texas A & M University to develop a method of quantifying volatility and subsequent off-target movement of 2,4-D, dicamba, and triclopyr. Rate–response curves were established by applying reduced rates ranging from 4 × 10−1 to 1 × 10−5 times the normal use rates of the herbicides to cotton and soybean and recording injury for 14 d after treatment (DAT) using a rating scale designed to quantify auxin-like herbicide injury. Injury from herbicide volatility was then produced on additional cotton and soybean plants through exposure to vapors of the dimethylamine salt of 2,4-D, diglycolamine salt of dicamba, and butoxyethyl ester of triclopyr using air chambers inside a greenhouse and volatility plots in the field. Injury resulting from this exposure was evaluated for 14 d using the same injury-evaluation scale that was used to produce the rate–response curves. Volatility-injury data were then applied to the rate–response curves so that herbicide rates corresponding with observed injury could be calculated. Using this method, herbicide volatility rates estimated from greenhouse-cotton injury were determined to be 3.0 × 10−3, 1.0 × 10−3, and 4.9 × 10−2 times the use rates of 2,4-D, dicamba, and triclopyr, respectively. Greenhouse-grown soybean developed injury consistent with 1.4 × 10−2, 1.0 × 10−3, and 2.5 × 10−2 times the normal use rate of 2,4-D, dicamba, and triclopyr, respectively. Under field conditions, cotton developed injury symptoms that were consistent with 4.0 × 10−3, 2.0 × 10−3, and 1.25 × 10−1 times the recommended use rates of 2,4-D, dicamba, and triclopyr, respectively. Field soybean displayed injury symptomology concordant with 1.6 × 10−1, 1.0 × 10−2, and 1.1 × 10−1 times the normal use rates of 2,4-D, dicamba, and triclopyr, respectively. This procedure provided herbicide volatility rate estimates that were consistent with rates and injury from the rate–response injury curves. Additional research is needed to ascertain its usefulness in determining long-term effects of drift injury on crop variables such as yield.

Copyright
Corresponding author
Corresponding author's E-mail: audie@tamu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. S. Sciumbato , J. M. Chandler , S. A. Senseman , R. W. Bovey , and K. L. Smith 2004. Determining exposure to auxin-like herbicides. I. Quantifying injury to cotton and soybean. Weed Technol. 18:11251134.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 18 *
Loading metrics...

* Views captured on Cambridge Core between 20th January 2017 - 26th June 2017. This data will be updated every 24 hours.