Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T05:44:17.621Z Has data issue: false hasContentIssue false

Dissipation of Pendimethalin in Organic Soils in Florida

Published online by Cambridge University Press:  20 January 2017

Dennis C. Odero*
Affiliation:
University of Florida, Everglades Research and Education Center, Belle Glade, FL 33430
Dale L. Shaner
Affiliation:
Water Management Research, Agricultural Research Service, USDA, Fort Collins, CO 80526
*
Corresponding author's E-mail: dcodero@ufl.edu.

Abstract

Understanding the persistence of PRE-applied pendimethalin is important in determining timing of subsequent weed management programs in sugarcane on organic soils in the Everglades Agricultural Area (EAA). Dissipation of oil- and water-based pendimethalin formulations applied PRE at 2, 4, and 8 kg ai ha−1 were compared in 2011 and 2012 on organic soils in the EAA. The rate of dissipation of both formulations was very similar. Both formulations had an initial rapid rate of dissipation followed by a slower rate of dissipation. However, the initial amount of pendimethalin in the soil was higher with the water-based compared to the oil-based formulation, most likely because of the lower volatility of the water-based formulation. The half-lives (DT50s) of the oil-based formulation were 32, 18, and 10 d and 8, 8, and 12 d at 2, 4, and 8 kg ha−1, respectively, in 2011 and 2012, respectively. The DT50s of the water-based formulation were 20, 13, and 10 d and 12, 12, and 14 d at 2, 4, and 8 kg ha−1, respectively in 2011 and 2012, respectively. These DT50 values were attributed to low soil water content as well as the absence of incorporation following application. Our results suggest that dissipation of pendimethalin is rapid on organic soils irrespective of the formulation when applied under dry soil conditions with no incorporation into the soil.

Entender la persistencia de aplicaciones PRE de pendimethalin es importante para determinar el momento de implementación de programas de manejo de malezas subsiguientes en caña de azúcar en suelos orgánicos en el Área Agrícola de los Everglades (EAA). En 2011 y 2012, se comparó la disipación de formulaciones de pendimethalin a base de aceite y de agua aplicadas PRE a 2, 4, y 8 kg ai ha−1 en suelos orgánicos en el EAA. La tasa de disipación de ambas formulaciones fue muy similar. Ambas formulaciones tuvieron una tasa inicial de disipación rápida seguida de una tasa de disipación más lenta. Sin embargo, la cantidad inicial de pendimethalin en el suelo fue mayor con la formulación a base de agua en comparación con la formulación a base de aceite. Esto es probable que se debiera a la baja volatilidad de la formulación a base de agua. Las vidas medias (DT50s) de la formulación a base de aceite fueron 32, 18, y 10 d y 8, 8, y 12 d a 2, 4, y 8 kg ha−1, en 2011 y 2012, respectivamente. Las DT50s de la formulación a base de agua fueron 20, 13, y 10 d y 12, 12, y 14 d a 2, 4, y 8 kg ha−1, en 2011 y 2012, respectivamente. Estos valores de DT50s fueron atribuidos al bajo nivel de humedad de suelo y a la ausencia de incorporación después de la aplicación. Nuestros resultados sugieren que la disipación de pendimethalin es rápida en suelos orgánicos independientemente de la formulación cuando se aplica sin incorporación a suelos en condiciones secas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alister, CA, Gomez, PA, Rojas, S, Kogan, M (2009) Pendimethalin and oxyfluorfen degradation under two irrigation conditions over four years application. J Environ Sci Heal B 44:337343 Google Scholar
Anonymous (2012) Prowl® H2O herbicide label http://www.agproducts.basf.com/products/prowl-h20-herbicide.html. Accessed December 12, 2012Google Scholar
Barrett, MR, Lavy, TL (1983) Effects of soil water content on pendimethalin dissipation. J Environ Qual 12:504508 Google Scholar
Chopra, I, Kumari, B, Sharma, SK (2010) Evaluation of leaching behavior of pendimethalin in sandy loam soil. Environ Monit Assess 160:123126 Google Scholar
Jones, CA, Griffin, JL (2009) Red morningglory (Ipomoea coccinea) control and competition in sugarcane. J Am Soc Sugar Cane Technol 29:2535 Google Scholar
Judice, WE, Griffin, JL, Jones, CA, Etheredge, LM Jr., Salassi, ME (2006) Weed control and economics using reduced tillage programs in sugarcane. Weed Technol 20:319325 Google Scholar
Kennedy, JM, Talbert, RE (1977) Comparative persistence of dinitroaniline type herbicides on the soil surface. Weed Sci 25:373381 Google Scholar
Kulshrestha, G, Singh, SB, Lal, SP, Yaduraju, NT (2000) Effect of long-term field application of pendimethalin: enhanced degradation in soil. Pest Manag Sci 56:202206 Google Scholar
Lee, YD, Kim, HJ, Chung, JB, Jeong, BR (2000) Loss of pendimethalin in runoff and leaching from turfgrass land under simulated rainfall. J Agric Food Chem 48:53765382 Google Scholar
Lin, HT, Chen, SW, Shen, CJ, Chu, C (2007) Dissipation of pendimethalin in the garlic (Allium sativum L.) under subtropical condition. Bull Environ Contam Toxicol 79:8486 Google Scholar
Millhollon, RW (1993) Preemergence control of itchgrass (Rottboellia cochinchinensis) and johnsongrass (Sorghum halepense) in sugarcane (Saccharum spp hybrids) with pendimethalin and prodiamine. Weed Sci 41:621626 Google Scholar
Parochetti, JV, Dec, GW Jr. (1978) Photodecomposition of eleven dinitroaniline herbicides. Weed Sci 26:153156 Google Scholar
Poku, JA, Zimdahl, RL (1980) Soil persistence of dinitramine. Weed Sci 28:650654 Google Scholar
Richard, EP Jr. (1997) Johnsongrass (Sorghum halepense) control in fallow sugarcane (Saccharum spp. hybrids) fields. Weed Technol 11:410416 Google Scholar
Savage, KE (1978) Persistence of several dinitroaniline herbicides as affected by soil moisture. Weed Sci 26:465471 Google Scholar
Savage, KE, Jordan, TN (1980) Persistence of three dinitroaniline herbicides on the soil surface. Weed Sci 28:105110 Google Scholar
Schueneman, TJ, Sanchez, CA (1994) Vegetable production in the EAA. Pages 238277 in Bottcher, AB, Izuno, FT, eds. Everglades Agricultural Area (EAA): Water, Soil, Crop, and Environmental Management. Gainesville, FL: University Press of Florida Google Scholar
Senseman, SA, ed (2007) Herbicide Handbook. 9th edn. Lawrence, KS: Weed Science Society of America. 458 pGoogle Scholar
Serrano, FJ, Encarnacion, R, Pilar, H, Alfredo, L, Pilar, F (2010) Enhanced dissipation of oxyfluorfen, ethalfluralin, trifluralin, propyzamide, and pendimethalin in soil by solarization and biosolarization. J Agr Food Chem 58:24332438 Google Scholar
Shaner, DL (2012) Field dissipation of sulfentrazone and pendimethalin in Colorado. Weed Technol 26:633637 Google Scholar
Simmons, LD, Derr, JF (2007) Pendimethalin movement through pine bark compared to field soil. Weed Technol 21:873876 Google Scholar
Smith, AE, Aubin, A J, McIntosh, TC (1995) Field persistence studies with emulsifiable concentrate and granular formulations of the herbicide pendimethalin in Saskatchewan. J Agric Food Chem 43:29882991 Google Scholar
Smith, DT, Richard, EP Jr., Santo, LT (2008) Weed control in sugarcane and the role of triazine herbicides. Pages 185197 in LeBaron, HM, McFarland, JE, Burnside, OC, eds. The Triazine Herbicides 50 Years Revolutionizing Agriculture. San Diego, CA: Elsevier. 584 pGoogle Scholar
United States Department of Agriculture–National Agricultural Statistics Services (2012) Acreage. ISSN: 1949–1522. http://usda01.library.cornell.edu/usda/current/Acre/Acre-06-29-2012.pdf. Accessed December 2, 2012Google Scholar
Viator, BJ, Griffin, JL, Ellis, JM (2002) Sugarcane (Saccharum spp.) response to azafeniden applied preemergence and postemergence. Weed Technol 16:444451 Google Scholar
Walker, A, Bond, W (1977) Persistence of the herbicide AC92, 553, N-(l-ethylpropyl)-2, 6-dinitro-3, 4-xylidine, in soils. Pestic Sci 8:359365 Google Scholar
Weber, JB (1990) Behavior of dinitroaniline herbicides in soils. Weed Technol 4:394406 Google Scholar
Weber, JB, Weed, SB, Waldrep, TW (1974) Effect of soil constituents on herbicide activity in modified-soil field plots. Weed Sci 22:454459 Google Scholar
Zimdahl, RL, Catizone, P, Butcher, AC (1984) Degradation of pendimethalin in soil. Weed Sci 32:408412 Google Scholar
Zimdahl, RL, Gwynn, SM (1977) Soil degradation of three dinitroanilines. Weed Sci 25:247251.Google Scholar