Skip to main content

Economic Evaluation of Glyphosate-Resistant and Conventional Sugar Beet

  • Andrew R. Kniss (a1), Robert G. Wilson (a1), Alex R. Martin (a1), Paul A. Burgener (a2) and Dillon M. Feuz (a2)...

Field experiments were conducted near Scottsbluff, NE, in 2001 and 2002 to compare economic aspects of glyphosate applied to different glyphosate-resistant sugar beet cultivars with that of conventional herbicide programs applied to near-equivalent, non–glyphosate-resistant conventional cultivars. Glyphosate applied two or three times at 2-wk intervals, beginning when weeds were 10 cm tall, provided excellent weed control, yield, and net economic return regardless of the glyphosate-resistant sugar beet cultivar. All conventional herbicide treatments resulted in similar net economic returns. Although the conventional sugar beet cultivars ‘HM 1640’ and ‘Beta 4546’ responded similarly to herbicide treatments with respect to sucrose content, ‘Beta 4546RR’ produced roots with 1% more sucrose than ‘HM 1640RR’. When averaged over herbicide treatments, a producer planting Beta 4546RR could afford to pay US $185/ha more for glyphosate-resistant technology as could a producer planting HM 1640RR. When averaged over cultivars and herbicide treatments, it is estimated that a producer could afford to pay an additional US $385/ha for glyphosate-resistant technology without decreasing net return.

Corresponding author
Corresponding author's E-mail:
Hide All
∗ A contribution of the University of Nebraska Agricultural Research Division, Lincoln, NE 68583. Journal Series 14086.
Hide All
Burgener, P. A. 2001. Economics of sugarbeet production. in Wilson, R. G., ed. Sugarbeet Production Guide. University of Nebraska Cooperative Extension. Lincoln, NE: University of Nebraska. Pp. 189196.
Burgener, P. A., Feuz, D. M., and Wilson, R. G. 2000. Economics of transgenic sugarbeet production. Western Agricultural Economics Association Annual Meetings, June 29–July 1, 2000. Vancouver, Canada: Western Agricultural Economics Association. 12 p.
Dawson, J. H. 1974. Full-season weed control in sugarbeets. Weed Sci. 22:330335.
Dexter, A. G., Luecke, J. L., and Smith, L. J. 1999. Influence of Cultivation on Yield of Roundup Ready and Liberty Link Sugarbeets. Sugarbeet Research and Extension Reports, North Dakota State University: Web page: Accessed: June 26, 2003.
Eshel, J., Zimdahl, R. L., and Schweizer, E. E. 1978. Uptake and translocation of ethofumesate [herbicide] in sugar-beet plants. Pestic. Sci. 9:301304.
Gianessi, L. P., Silvers, C. S., Sankula, S., and Carpenter, J. E. 2002. Plant Biotechnology: Current and Potential Impact for Improving Pest Management in U.S. Agriculture: An Analysis of 40 Case Studies. Washington, DC: National Center for Food & Agricultural Policy.
Guza, C. J., Ransom, C. V., and Mallory-Smith, C. 2002. Weed control in glyphosate-resistant sugarbeet (Beta vulgaris L). J. Sugar Beet Res. 39:109123.
Hamlin, W. G. and Groskurth, D. C. 2002. 2002. Nebraska Agricultural Statistics. Lincoln, NE: Nebraska Agricultural Statistics Service. 144 p.
Johnson, W. G., Bradley, P. R., Hart, S. E., Buesinger, M. L., and Massey, R. E. 2000. Efficacy and economics of weed management in glyphosate-resistant corn (Zea mays). Weed Technol. 14:5765.
May, M. J. 2003. Economic consequences for UK farmers of growing GM herbicide tolerant sugar beet. Ann. Appl. Biol. 142:4148.
McAuliffe, D. and Appleby, A. P. 1981. Effect of a pre-irrigation period on the activity of ethofumesate applied to dry soil. Weed Sci. 29:712717.
McAuliffe, D. and Appleby, A. P. 1984. Activity loss of ethofumesate in dry soil by chemical degradation and adsorption. Weed Sci. 32:468471.
Miller, S. D. and Mesbah, A. O. 2000. Weed control and sugarbeet response with micro-rates of postemergence herbicides. Proc. Western Soc. Weed Sci. 53:73.
Nolte, S. A. and Young, B. G. 2002a. Efficacy and economic return on investment for conventional and herbicide-resistant corn (Zea mays). Weed Technol. 16:371378.
Nolte, S. A. and Young, B. G. 2002b. Efficacy and economic return on investment for conventional and herbicide-resistant soybean (Glycine max). Weed Technol. 16:388395.
Reddy, K. N. and Whiting, K. 2000. Weed control and economic comparisons of glyphosate-resistant, sulfonylurea-tolerant, and conventional soybean (Glycine max) systems. Weed Technol. 14:204211.
Rice, C. A., Mesbah, A., and Miller, S. D. 2001. Economic evaluation of weed management systems in sugarbeets. Proc. Am. Soc. Sugar Beet Tech. 31:64.
[SAS] Statistical Analysis Systems. 2000. The SAS System for Windows. Version 8e. Cary, NC: Statistical Analysis Systems Institute. (online version.).
Schneider, K., Shcafer-Pregl, R., Borchardt, D. C., and Salamini, F. 2002. Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theor. Appl. Genet. 104:11071113.
[USDA] United States Department of Agriculture. 1999. Novartis Seeds and Monsanto Co.; availability of determination of nonregulated status for sugar beet genetically engineered for glyphosate herbicide tolerance. Fed. Reg. 64:11771178.
University of Nebraska. 2002. 2002. Guide for Weed Management in Nebraska. University of Nebraska Cooperative Extension EC-130-D. 133 p.
Wilson, R. G. 1999. Micro rates of desmedipham plus phenmedipham for weed control in sugarbeet. Proc. North Cent. Weed Sci. Soc. 54:155.
Wilson, R. G., Yonts, C. D., and Smith, J. A. 2002. Influence of glyphosate and glufosinate on weed control and sugarbeet (Beta vulgaris) yield in herbicide tolerant sugarbeet. Weed Technol. 16:6673.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed