Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T07:33:58.041Z Has data issue: false hasContentIssue false

Future Outlook for Herbicide-Resistance Research

Published online by Cambridge University Press:  12 June 2017

Mary Lynn Roush
Affiliation:
Dep. For. Sci., Oreg. State Univ., Corvallis, OR 97331-5705
Steven R. Radosevich
Affiliation:
Dep. For. Sci., Oreg. State Univ., Corvallis, OR 97331-5705
Bruce D. Maxwell
Affiliation:
Dep. For. Sci., Oreg. State Univ., Corvallis, OR 97331-5705

Abstract

Management of herbicide resistance will require interdisciplinary research to understand the mechanisms and dynamics of resistance. We believe that models are valuable tools. Models propose hypotheses about biological processes that influence the evolution of resistance and management tools that may reduce resistance in weed populations. Hypotheses help to direct research. For example, our model proposes that fitness and gene flow dramatically influence the evolution of and recovery from resistance in weed populations. Therefore, our research agenda should include ecological investigations of the life-history traits involved in fitness and gene flow. The model suggests thresholds of susceptible weed abundance to reduce selection pressure and to delay resistance. These thresholds will be related closely to economic weed thresholds. While the resistance issue emphasizes the need for basic biological and ecological research, resistance is only a part of the broader research agenda, which calls for holistic and interdisciplinary approaches to understanding and managing crop systems.

Type
Symposium
Copyright
Copyright © 1990 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Betts, K. J., Wyse, D. L., Gronwald, J. W., and Ehlke, N. J. 1989. Inheritance of diclofop resistance in Italian ryegrass. Agron. Abstr., Am. Soc. Agron. C1159.Google Scholar
2. Conard, S. G., and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes susceptible or resistant to atrazine. J. Appl. Ecol. 16:171177.CrossRefGoogle Scholar
3. Crow, J. F. 1986. Basic concepts in population, quantitative, and evolutionary genetics. W. H. Freeman and Co., New York, p. 273.Google Scholar
4. DuPont de Nemours, E. I., and Company. 1988. DuPont weed resistance workshop. Denver, CO.Google Scholar
5. Gressel, J. 1989. Why get resistance? It can be prevented or delayed. in Cussans, G. and Casely, J. C., ed. Herbicide Resistance in Weeds and Crops. 11th Long Ashton Int. Symp., Bristol. (In press).Google Scholar
6. Gressel, J., and Segel, L. A. 1978. The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J. Theor. Biol. 75:349371.Google Scholar
7. Gressel, J., and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. p. 325348 in LeBaron, H. M. and Gressel, J., ed. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
8. Gressel, J., and Segel, L. A. 1989. Herbicide rotations and mixtures: effective strategies to delay resistance. in Green, M. B., Moberg, W. K., and LeBaron, H. M., ed. Fundamental and Practical Approaches to Combating Resistance. ACS Int. Symp., Am. Chem. Soc. Books, Palo Alto, CA (In press).Google Scholar
9. Hardin, G. 1985. Filters Against Folly. Penguin, New York.Google Scholar
10. Harper, J. L. 1956. The evolution of weeds in relation to resistance to herbicides. Proc. 3rd Br. Weed Control Conf. (Blackpool) 1:179188.Google Scholar
11. Heap, I. M. 1987. Herbicide cross resistance in a population of annual ryegrass (Lolium rigidum). p. 114118 in Lemerle, D. and Leys, A. G., ed. Proc. 8th Aust. Weeds Conf. Google Scholar
12. Heap, I., and Knight, R. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl. J. Aust. Inst. Agric. Sci. 48:156157.Google Scholar
13. Heap, I., and Knight, R. 1986. The occurrence of herbicide cross-resistance in a population of annual ryegrass (L. rigidum). Aust. J. Agric. Res. 37:149156.CrossRefGoogle Scholar
14. Holt, J. S., and Radosevich, S. R. 1983. Differential growth of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 31:112115.Google Scholar
15. Holt, J. S., Radosevich, S. R., and Stemler, A. J. 1983. Differential efficiency of photosynthetic oxygen evolution in flashing light in triazine-resistant and triazine-susceptible biotypes of Senecio vulgaris L. Biochim. Biophys. Acta. 722:245255.Google Scholar
16. King, R. P., Lybecker, D. W., Schweizer, E. E., and Zimdahl, R. L. 1986. Bioeconomic modeling to simulate weed control strategies for continuous corn (Zea mays). Weed Sci. 34:972979.CrossRefGoogle Scholar
17. LeBaron, H. M., and Gressel, J. 1982. Herbicide Resistance in Plants. John Wiley and Sons, Inc., New York.Google Scholar
18. Levin, D. A., and Kerster, H. W. 1974. Gene flow in seed plants. Evol. Biol. 7:139220.Google Scholar
19. Mallory-Smith, C. A., Dial, M. J., and Thill, O. C. 1989. Inheritance of sulfonylurea herbicide resistance in prickly lettuce (Lactuca serriola L.). Proc. West. Soc. Weed Sci. 42:39.Google Scholar
20. Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.CrossRefGoogle Scholar
21. Maxwell, B. D., Wilson, M. V., and Radosevich, S. R. 1988. Population modeling approach for evaluating leafy spurge development and control. Weed Technol. 2:132138.Google Scholar
22. Moloney, K. A. 1988. Fine-scale spatial and temporal variation in demography of a perennial bunchgrass. Ecology 69:15881598.Google Scholar
23. Moss, S. R. 1987. Herbicide resistance in blackgrass (Alopecurus myosuroides). Br. Crop Prot. Conf.–Weeds 8C:879886.Google Scholar
24. Mudge, L. C., Gossett, B. J., and Murphy, T. R. 1984. Resistance of goosegrass (Eleusine indica) to dinitroaniline herbicides. Weed Sci. 32:591594.Google Scholar
25. Pfister, K., Radosevich, S. R., and Arntzen, C. J. 1979. Modification of herbicide binding to photosystem II in two biotypes of Senecio vulgaris L. Plant Physiol. 64:995999.Google Scholar
26. Powles, S. B. 1987. A review of weeds in Australia resistant to herbicides. p. 109113 in Lemerle, D. and Leys, A., ed. Proc. 8th Aust. Weeds Conf. Google Scholar
27. Putwain, P. D., Mortimer, A. M., Ulf-Hansen, P. F., and Watson, D. 1989. Population ecology and selection for herbicide-resistance. Abstr. Weed Sci. Soc. Am. 29:301.Google Scholar
28. Radosevich, S. R., and Appleby, A. P. 1973. Relative susceptibility of two common groundsel (Senecio vulgaris L.) biotypes to six s-triazines. Agron. J. 65:553555.Google Scholar
29. Radosevich, S. R., and Appleby, A. P. 1973. Studies on the mechanism of resistance to simazine in common groundsel (Senecio vulgaris L.). Weed Sci. 21:497500.Google Scholar
30. Radosevich, S. R., and Holt, J. S. 1982. Physiological responses and fitness in susceptible and resistant weed biotypes to triazine herbicides. p. 163183 in LeBaron, H. M. and Gressel, J., ed. Herbicide Resistance in Plants. John Wiley and Sons, Inc., New York.Google Scholar
31. Sims, J. D., Stemler, A. J., and Radosevich, S. R. 1981. Differential light responses of photosynthesis by triazine-resistant and triazine-susceptible Senecio vulgaris biotypes. Plant Physiol. 67:744748.Google Scholar
32. Stanger, C. E., and Appleby, A. P. 1989. Italian ryegrass (L. multiflorum) biotypes tolerant to diclofop-methyl. Weed Sci. 37:350352.Google Scholar
33. Stowe, A. E., and Holt, J. S. 1988. Comparison of triazine-resistant and -susceptible biotypes of Senecio vulgaris and their F1 hybrids. Plant Physiol. 87:183189.Google Scholar
34. Streibig, J. C., Combellack, H. H., Pritchard, G. H., and Richardson, R. G. 1989. Estimation of thresholds for weed control in Australian cereals. Weed Res. 29:117126.Google Scholar
35. Valverde, B. E., Radosevich, S. R., and Appleby, A. P. 1988. Growth and competitive ability of dinitroaniline-herbicide resistant and susceptible goosegrass (Eleusine indica). Proc. West. Soc. Weed Sci. 41:81.Google Scholar