Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T23:21:49.826Z Has data issue: false hasContentIssue false

Growth Stage Influences Mesotrione Efficacy and Fate in Two Bluegrass (Poa) Species

Published online by Cambridge University Press:  20 January 2017

Jialin Yu*
Affiliation:
Crop and Soil Sciences Department, University of Georgia, 1109 Experiment Street, Griffin, GA 30223
Patrick E. McCullough
Affiliation:
Crop and Soil Sciences Department, University of Georgia, 1109 Experiment Street, Griffin, GA 30223
*
Corresponding author's E-mail: yu3577@uga.edu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mesotrione provides PRE and early POST control of annual bluegrass during Kentucky bluegrass establishment from seed, but applications do not effectively control multitiller plants. The physiological effects of growth stage on efficacy and the basis of mesotrione selectivity between species is not well understood. The objectives of this research were to evaluate mesotrione behavior in these species at three growth stages: pretiller (3 to 5 leaves), 1-tiller, and multitiller (5 to 7 tillers). In greenhouse experiments, a single mesotrione application at 280 g ai ha−1 injured pretiller, 1-tiller, and multitiller annual bluegrass 54, 33, and 11% at 4 wk after initial treatment (WAIT), respectively. A sequential application of mesotrione increased injury to pretiller and 1-tiller annual bluegrass by 20 and 17% from a single treatment, respectively. Sequential mesotrione applications caused at least 14% injury to multitiller annual bluegrass and Kentucky bluegrass at all growth stages and did not reduce tillering compared to the nontreated. Annual bluegrass absorbed 34% more root-applied 14C-mesotrione than Kentucky bluegrass in hydroponic culture, but relative differences (Bq g−1) among growth stages were not detected for both species. Averaged across growth stages, annual and Kentucky bluegrass absorbed 31 and 35% of the applied radioactivity after foliar treatments, respectively. However, averaged across species, multitiller plants metabolized approximately two times more 14C-mesotrione than pretiller and 1-tiller plants. Overall, the selectivity of mesotrione for annual bluegrass control during Kentucky bluegrass establishment results from differential levels of root absorption. Mesotrione has limited efficacy for controlling multitiller annual bluegrass due to enhanced degradation compared to pretiller and 1-tiller plants.

Mesotrione brinda control de Poa annua en PRE y POST temprano durante el establecimiento del césped Poa pratensis a partir de semilla, pero las aplicaciones no controlan efectivamente plantas en el estadio de múltiples hijuelos. Los efectos fisiológicos del estadio de desarrollo sobre la eficacia y las bases de la selectividad de mesotrione entre especies no se conocen bien. Los objetivos de esta investigación fueron evaluar el comportamiento de mesotrione en estas especies en tres estadios de desarrollo: pre-hijuelo (3 a 5 hojas), 1-hijuelo, y múltiples hijuelos (5 a 7 hijuelos). En experimentos de invernadero, una aplicación sencilla de mesotrione a 280 g ai ha−1 dañó P. annua en el estadio de pre-hijuelo, 1-hijuelo, y múltiples hijuelos 54%, 33, y 11% a 4 semanas después del tratamiento inicial (WAIT), respectivamente. Una aplicación secuencial de mesotrione aumentó el daño a P. annua en los estadios pre-hijuelo y 1-hijuelo en 20 y 17%, en comparación con el tratamiento sencillo, respectivamente. Las aplicaciones secuenciales de mesotrione causaron al menos 14% de daño a P. annua en el estadio de múltiples hijuelos y al césped P. pratensis en todos los estadios de desarrollo, y no redujo la producción de hijuelos al compararse con el testigo sin tratamiento. P. annua absorbió 34% más 14C-mesotrione aplicado a la raíz que P. pratensis en un cultivo hidropónico, pero diferencias relativas (Bq g−1) entre los estadios de desarrollo no fueron detectadas en ninguna de las especies. Al promediar los estadios de desarrollo, P. annua y P. pratensis absorbieron 31 y 35% de la radioactividad aplicada después de los tratamientos foliares, respectivamente. Sin embargo, al promediar las especies, las plantas en el estadio de múltiples hijuelos metabolizaron aproximadamente el doble de 14C-mesotrione que las plantas en pre-hijuelos y 1-hijuelo. En general, la selectividad de mesotrione para el control de P. annua durante el establecimiento del césped P. pratensis resulta de niveles diferenciales de absorción radical. Mesotrione tiene eficacia limitada para el control de P. annua en el estadio de múltiples hijuelos producto de una mayor degradación del herbicida al compararse con plantas en los estadios de pre-hijuelo y 1-hijuelos.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - SA
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons license is included and the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

Footnotes

Associate Editor for this paper: Daniel Stephenson, Louisiana State University Agricultural Center.

References

Literature Cited

Abit, MJM, Al-Khatib, K (2009) Absorption, translocation, and metabolism of mesotrione in grain sorghum. Weed Sci 57:563566 Google Scholar
Anonymous (2006) Beacon® section 24(C) special local need label. Greensboro, NC: Syngenta Crop Protection, Inc. 4 pGoogle Scholar
Anonymous (2014) Prograss herbicide label. Research Triangle Park: Bayer Environmental Science. 7 pGoogle Scholar
Anonymous (2012) Xonerate herbicide label. Cary, NC: Arysta LifeScience North America, LLC. 30 pGoogle Scholar
Armel, GR, Hall, GJ, Wilson, HP, Cullen, N (2005) Mesotrione plus atrazine mixtures for control of Canada thistle (Cirsium arvense). Weed Sci 53:202211 Google Scholar
Askew, SD, Beam, JB (2002) Weed management in cool-season turf with mesotrione. Page 129 in Proceedings of Northeastern Weed Science Society. Philadelphia, PA: Northeastern Weed Science Society. [Abstract]Google Scholar
Beard, JB. (1970) An ecological study of annual bluegrass. U S Golf Assoc Green Sect Rec 8:1318 Google Scholar
Beaudegnies, R, Edmunds, AJF, Fraser, TEM, Hall, RG, Hawkes, TR, Mitchell, G, Schaetzer, J, Wendeborn, S, Wibley, J (2009) Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—a review of the triketone chemistry story from a Syngenta perspective. Bioorg Med Chem 17:41344152 Google Scholar
Chism, WJ, Birch, JB, and Bingham, SW (1992) Nonlinear regressions for analyzing growth stage and quinclorac interactions. Weed Technol 6:898903 Google Scholar
Dernoeden, PH, Kaminski, JE, Fu, J (2008) Selective creeping bentgrass control in Kentucky bluegrass and tall fescue with mesotrione and triclopyr ester. HortScience 43:509513 Google Scholar
Dickens, R (1979) Control of annual bluegrass (Poa annua L.) in overseeded bermudagrass Cynodon spp. golf greens. Weed Sci 27:642644 Google Scholar
Hart, SE, McCullough, PE (2007a) Annual bluegrass (Poa annua) control in Kentucky bluegrass (Poa pratensis) with bispyribac-sodium, primisulfuron, and sulfosulfuron. Weed Technol 21:702709 Google Scholar
Hart, SE, McCullough, PE (2007b) Use of mesotrione at cool-season turfgrass establishment for annual bluegrass control. https://scisoc.confex.com/crops/2007am/techprogram/P36149.HTM. Accessed February 4, 2015Google Scholar
Hawkes, TR, Holt, DC, Andrews, CJ, Thomas, PG, Langford, MP, Hollingworth, S, Mitchell, G (2001) Mesotrione mechanism of herbicidal activity and selectivity in corn. Volume 2. Pages 563568 in BCPC Proceedings—Weeds, British Crop Protection Council Brighton, UK: British Crop Protection Council Google Scholar
Hoagland, DR, Arnon, DI (1950) The water-culture method for growing plants without soil. Berkeley, CA: California Agricultural Experiment Station Circular No. 347. 32 pGoogle Scholar
Hoiberg, AH, Minner, DD (2010) Mesotrione reduces presence of annual bluegrass during fairway conversion. https://dl.sciencesocieties.org/publications/meetings/download/pdf/2010am/57595. Accessed February 4, 2016Google Scholar
Johnson, BJ, Landry, GW, Karnok, KJ (1989) Tolerance of bentgrass to amount, frequency, and timing of ethofumesate applications. HortScience 24:102104 Google Scholar
Kells, JJ, Meggitt, WF, Penner, D (1984) Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci 32:143149 Google Scholar
Kohler, EA, Branham, BE (2002) Site of uptake, absorption, translocation, and metabolism of ethofumesate in three turfgrass species. Weed Sci 50:576580 Google Scholar
Lee, DL, Knudsen, CG, Michaely, WJ, Chin, HL, Nguyen, NH, Carter, CG, Cromartie, TH, Lake, BH, Shribbs, JM, Fraser, T (1999) The structure–activity relationships of the triketone class of HPPD herbicides. Pest Manag Sci 54:377384 Google Scholar
Lush, WM (1989) Adaptation and differentiation of golf course populations of annual bluegrass. Weed Sci 37:5459 Google Scholar
Lycan, DW, Hart, SE (2006) Foliar and root absorption and translocation of bispyribac-sodium in cool-season turfgrass. Weed Technol 20:10151022 Google Scholar
Ma, R, Kandun, SS, Tranel, PJ, Riggins, CW, McGinness, DL, Hager, AG, Hawkes, T, McIndoe, E, Riechers, D (2013) Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiol 163:363377 Google Scholar
McCurdy, JD, McElroy, JS, Breeden, GK, Kopsell, DA (2008) Mesotrione plus prodiamine for smooth crabgrass (Digitaria ischaemum) control in established bermudagrass turf. Weed Technol 22:275279 Google Scholar
McCurdy, JD, McElroy, JS, Kopsell, DA, Sams, CE (2009) Mesotrione control and pigment concentration of large crabgrass (Digitaria sanguinalis) under varying environmental conditions. Plant Manag Sci 65:640644 Google Scholar
McCullough, PE, Hart, SE, Weisenberger, D, Reicher, ZJ (2010) Amicarbazone efficacy on annual bluegrass and safety on cool-season turfgrasses. Weed Technol 24:461470 Google Scholar
McCullough, PE, Singh, R, Czarnota, MA, Johnston, CR (2015) Primisulfuron-methyl efficacy and fate in annual bluegrass (Poa annua) and Kentucky bluegrass. Weed Sci 63:388398 Google Scholar
Mitchell, G, Bartlett, DW, Fraser, TEM, Hawkes, TR, Holt, DC, Townson, JC, Wichert, RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120128 Google Scholar
Pataky, JK, Williams, MM, Riechers, DE, Meyer, MD (2009) A common genetic basis for cross-sensitivity to mesotrione and nicosulfuron in sweet corn hybrid cultivars and inbreds grown throughout North America. J Am Soc Hortic Sci 134:252260 Google Scholar
Reicher, ZJ, Weisenberger, DV, Morton, DE, Branham, BE, Sharp, W (2011) Fall applications of mesotrione for annual bluegrass control in Kentucky bluegrass. Appl: Turf Sci. DOI: Google Scholar
Skelton, JJ, Sharp, W, Branham, BE (2012) Postemergence control of annual bluegrass with mesotrione in Kentucky bluegrass. HortScience 47:522526 Google Scholar
Venner, KA (2011) Use of mesotrione for annual bluegrass (Poa annua L.) at cool-season turfgrass establishment. . New Brunswick, New Jersey: The State University of New Jersey. 37 pGoogle Scholar
Whaley, CM, Armel, GR, Wilson, HP, Hines, TE (2006) Comparison of mesotrione combinations with standard weed control programs in corn. Weed Technol 20:605611 Google Scholar
Yu, J, McCullough, PE, Vencill, WK (2013) Absorption, translocation, and metabolism of amicarbazone in annual bluegrass (Poa annua), creeping bentgrass (Agrostis stolonifera), and tall fescue (Festuca arundinacea). Weed Sci 61:217221 Google Scholar