Skip to main content
    • Aa
    • Aa

Joint Action Analysis Utilizing Concentration Addition and Independent Action Models

  • Julie A. Abendroth (a1), Erin E. Blankenship (a2), Alex R. Martin (a3) and Fred W. Roeth (a3)

In weed science literature, models such as concentration addition, independent action, effect summation, and the parallel line assay technique have been used to predict and analyze whole-plant response to herbicide mixtures. Although a joint action reference model is necessary for determining whether the herbicide mixture provides less than (antagonistic), equal to (zero-interaction or additive), or greater than (synergistic) expected control, model selection often occurs with little regard to the model's underlying biological assumptions. The joint action models of concentration addition (CA) and independent action (IA) are the appropriate models to consider for analysis of herbicide mixtures of two active components. CA assumes additivity of dose, with herbicides differing only in potency, whereas IA assumes multiplicativity of effects, in which herbicides behave independently and sequentially within the plant. CA and IA predicted mixture responses were computed for a sample mixture data set of mesotrione plus atrazine. IA predicted lower mixture responses than CA; for example, mesotrione at 17.5 g ha−1 + atrazine at 140 g ha−1 was predicted to provide 45% (IA) compared with 53% (CA) control of Palmer amaranth. Joint action claims of synergism and antagonism were shown to be dependent on the reference model selected. Although mesotrione plus atrazine combinations were synergistic under IA assumptions, analysis under CA assumptions indicated mesotrione plus atrazine to be synergistic, additive, and antagonistic according to the selected effective concentration (EC x ) level and fixed-ratio mixture. Because it is not possible to determine the appropriate joint action model on the basis of fit of predicted to observed mixture data, the appropriateness of underlying biological assumptions was considered for the sample mixture data set. Additionally, we provide decision criteria to aid researchers in their selection of an appropriate joint action reference model.

En la literatura de la ciencia de las malezas, modelos tales como el de adición de concentración, acción independiente, la suma de los efectos y la técnica de prueba de líneas paralelas se han usado para predecir y analizar la respuesta de toda la planta a la mezcla de herbicidas. Mientras que se necesita un modelo de acción conjunta de referencia para determinar si la mezcla de herbicida proporciona menos que (antagónico), igual a (cero interacción o aditivo) o mayor que (sinérgico) el control esperado, frecuentemente la selección del modelo se hace considerando poco las suposiciones biológicas subyacentes del modelo. Los modelos de acción conjunta de adición de concentración (CA) y acción independiente (IA) son los apropiados a considerar para los análisis de mezclas de herbicidas de dos componentes activos. El CA supone un efecto aditivo de dosis, con herbicidas que difieren solamente en potencia, mientras que IA supone un efecto multiplicativo en el que los herbicidas se comportan independientemente y secuencialmente dentro de la planta. Las respuestas de las mezclas predichas en los modelos CA e IA se computaron para una muestra de datos de una mezcla de mesotrione + atrazine. IA pronosticó respuestas a la mezcla más bajas que CA; por ejemplo, se estimó que mesotrione a 17.5 g/ha + atrazine a 140 g/ha proporcionaría un control de Amaranthus palmeri de 45% (IA) versus 53% (CA). Las predicciones de acción conjunta como sinergismo y antagonismo mostraron depender del modelo de referencia seleccionado. Mientras las combinaciones de mesotrione + atrazine resultaron ser sinérgicas, de acuerdo a las suposiciones IA, el análisis bajo las suposiciones CA indicó que mesotrione + atrazine sería sinérgico, aditivo y antagónico según el nivel de concentración efectiva (ECx) seleccionada y la proporción fija de mezcla utilizada. Debido a que no es posible determinar el modelo adecuado de acción conjunta basado en el ajuste de los datos pronosticados a los observados, se tomó en cuenta lo apropiado de las suposiciones biológicas subyacentes para el conjunto de datos muestra de la mezcla. Adicionalmente, los autores proporcionan criterios de decisión para ayudar a los investigadores en la selección de un modelo de acción conjunta de referencia apropiado.

Corresponding author
Corresponding author's E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. A. Abendroth , A. R. Martin , and F. W. Roeth 2006. Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol. 20:267274.

R. Altenburger , T. Backhaus , W. Boedeker , M. Faust , M. Scholze , and L. H. Grimme 2000. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischero: mixtures composed of similarly acting chemicals. Environ. Tox. Chem. 19:23412347.

R. Altenburger , W. Bödeker , M. Faust , and L. H. Grimme 1990. Evaluation of the isobologram method for the assessment of mixtures of chemicals. Ecotoxicol. Environ. Saf. 20:98114.

G. R. Armel , P. L. Rardon , M. C. McCormick , and N. M. Ferry 2007. Differential response of several carotenoid biosynthesis inhibitors in mixtures with atrazine. Weed Technol. 21:947953.

T. Backhaus , R. A. Altenburger , W. Boedeker , M. Faust , M. Scholze , and L. H. Grimme 2000. Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri . Environ. Tox. Chem. 19:23482356.

T. Backhaus , M. Faust , M. Scholze , P. Gramatica , M. Vighi , and L. H. Grimme 2004. Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action. Environ. Tox. Chem. 23:258264.

J. B. Belden , R. J. Gilliom , and M. J. Lydy 2007. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr. Environ. Assess. Manag. 3:364372.

M. C. Berenbaum 1978. A method for testing for synergy with any number of agents. J. Infect. Dis. 137:122130.

C. I. Bliss 1939. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26:585615.

W. Boedeker , K. Drescher , R. Altenburger , M. Faust , and L. H. Grimme 1993. Combined effects of toxicants: the need and soundness of assessment approaches in ecotoxicology. Sci. Total Environ. 134(Suppl. 2):931938.

P. R. Bradley , W. G. Johnson , and R. J. Smeda 2000. Response of sorghum (Sorghum bicolor) to atrazine, ammonium sulfate, and glyphosate. Weed Technol. 14:1518.

C. L. Brommer , D. R. Shaw , S. O. Duke , K. N. Reddy , and K. O. Willeford 2000. Antagonism of BAS 625 by selected broadleaf herbicides and the role of ethanol. Weed Sci. 48:181187.

I. C. Burke , A. J. Price , J. W. Wilcut , D. L. Jordan , A. S. Culpepper , and J. Tredaway-Ducar 2004. Annual grass control in peanut (Arachis hypogaea) with clethodim and imazapic. Weed Technol. 18:8892.

I. C. Burke , J. W. Wilcut , and D. Porterfield 2002. CGA-362622 antagonizes annual grass control with clethodim. Weed Technol. 16:749754.

W. H. Carter Jr. 1995. Relating isobolograms to response surfaces. Toxicology 105:181188.

N. Cedergreen , P. Kudsk , S. K. Mathiassen , and J. C. Streibig 2007. Combination effects of herbicides on plants and algae: do species and test systems matter? Pest Manag. Sci. 63:282295.

S. R. Colby 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:2022.

A. S. Crafts and C. W. Cleary 1936. Toxicity of arsenic, borax, chlorate, and their combinations in three California soils. Hilgardia 10:401413.

K. Drescher and W. Boedeker 1995. Assessment of the combined effects of substances: the relationship between concentration addition and independent action. Biometrics. 51:716730.

M. Faust , R. Altenburger , T. Backhaus , et al. 2003. Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat. Toxicol. 63:4363.

M. Faust , R. Altenburger , W. Boedeker , and L. H. Grimme 1994. Algal toxicity of binary combinations of pesticides. Bull. Environ. Contam. Toxicol. 53:134141.

P. K. Gessner 1995. Isobolographic analysis of interactions: an update on applications and utility. Toxicology 105:161179.

D. P. Gowing 1960. Comments on tests of herbicide mixtures. Weeds 8:379391.

J. M. Green , J. E. Jensen , and J. C. Streibig 1997. Defining and characterizing synergism and antagonism for xenobiotic mixtures. Pages 263274 in K. K. Hatzios , ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. Dordrecht, The Netherlands Kluwer Academic.

K. L. Hollaway , N. D. Hallam , and A. G. Flynn 1996. Synergistic joint action of MCPA ester and metsulfuron-methyl. Weed Res. 36:369374.

J. A. Hugie , G. A. Bollero , P. J. Tranel , and D. E. Riechers 2008. Defining the rate requirements for synergism between mesotrione and atrazine in redroot pigweed (Amaranthus retroflexus). Weed Sci. 56:265270.

K. I. N. Jensen and J. C. Caseley 1990. Antagonistic effects of 2,4-D amine and bentazone on control of Avena fatua with tralkoxydim. Weed Res. 30:389395.

P. K. Jensen and P. Kudsk 1988. Prediction of herbicide activity. Weed Res. 28:473478.

M. Junghans , T. Backhaus , M. Faust , M. Scholze , and L. H. Grimme 2003. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag. Sci. 59:11011110.

S. Kaushik , Inderjit , J. C. Streibig , and N. Cedergreen 2006. Activities of mixtures of soil-applied herbicides with different molecular targets. Pest Manag. Sci. 62:10921097.

C. H. Koger , I. C. Burke , D. K. Miller , J. A. Kendig , K. N. Reddy , and J. W. Wilcut 2007. MSMA antagonizes glyphosate and glufosinate efficacy on broadleaf and grass weeds. Weed Technol. 21:159165.

C. H. Koger , A. J. Price , and K. N. Reddy 2005. Weed control and cotton response to combinations of glyphosate and trifloxysulfuron. Weed Technol. 19:113121.

P. Kudsk 1988. The influence of volume rates on the activity of glyphosate and difenzoquat assessed by a parallel-line assay technique. Pestic. Sci. 24:2129.

P. Kudsk and S. K. Mathiassen 2004. Joint action of amino acid biosynthesis-inhibiting herbicides. Weed Res. 44:313322.

G. K. Y. Lam 1994. A general formulation of the concept of independent action for the combined effects of agents. Bull. Math. Biol. 56:959980.

D. Y. Lanclos , E. P. Webster , and W. Zhang 2002. Glufosinate tank-mix combinations in glufosinate-resistant rice (Oryza sativa). Weed Technol. 16:659663.

S. H. Liu , W. A. Quick , A. I. Hsiao , and J. C. Streibig 1994. Effect of MCPA on the phytotoxicity of imazamethabenz-methyl applied to wild oats (Avena fatua L.). Weed Res. 34:425431.

S. K. Mathiassen and P. Kudsk 1993. Joint action of sulfonylurea herbicides and MCPA. Weed Res. 33:441447.

S. K. Mathiassen and P. Kudsk 1998. Influence of broad-leaved weed herbicides on the activity of fenoxaprop-P-ethyl. Weed Res. 38:283289.

A. Onofri , E. A. Carbonell , H-P. Piepho , A. M. Mortimer , and R. D. Cousens 2010. Current statistical issues in Weed Research . Weed Res. 50:524.

E. W. Palmer , D. R. Shaw , and J. C. Holloway Jr. 2000. Broadleaf weed control in soybean (Glycine max) with CGA-277476 and four postemergence herbicides. Weed Technol. 14:617623.

N. D. Paveley , J. M. Thomas , T. B. Vaughan , N. D. Havis , and D. R. Jones 2003. Predicting effective doses for the joint action of two fungicide applications. Plant Pathol. 52:638647.

G. Pöch , P. Dittrich , and S. Holzmann 1990a. Evaluation of combined effects in dose–response studies by statistical comparison with additive and independent interactions. J. Pharmacol. Meth. 24:311325.

G. Pöch , R. J. Reiffenstein , and H. D. Unkelbach 1990b. Application of the isobologram technique for the analysis of combined effects with respect to additivity as well as independence. Can. J. Physiol. Pharmacol. 68:682688.

D. R. Shaw and J. C. Arnold 2002. Weed control from herbicide combinations with glyphosate. Weed Technol. 16:16.

K. W. Søbye , J. C. Streibig , and N. Cedergreen 2010. Prediction of joint herbicide action by biomass and chlorophyll a fluorescence. Weed Res. 51:2332. DOI: 10.1111/j.1365-3180.2010.00824.x.

J. C. Streibig 1984. Measurement of phytotoxicity of commercial and unformulated soil-applied herbicides. Weed Res. 24:327331.

J. C. Streibig , F. E. Dayan , A. M. Rimando , and S. O. Duke 1999. Joint action of natural and synthetic photosystem II inhibitors. Pestic. Sci. 55:137146.

J. C. Streibig , P. Kudsk , and J. E. Jensen 1998. A general joint action model for herbicide mixtures. Pestic. Sci. 53:2128.

P. Sutton , C. Richards , L. Buren , and L. Glasglow 2002. Activity of mesotrione on resistant weeds in maize. Pest Manag. Sci. 58:981984.

V. Vera , C. Gauvrit , and F. Cabanne 2001. Efficacy and foliar absorption of flupyrsulfuron-methyl and prosulfocarb applied alone or in mixture on Lolium multiflorum and wheat. Agronomie 21:3343.

G. Wehtje 2008. Synergism of dicamba with diflufenzopyr with respect to turfgrass weed control. Weed Technol. 22:679684.

A. J. Woodyard , G. A. Bollero , and D. E. Riechers 2009. Broadleaf weed management in corn utilizing synergistic postemergence herbicide combinations. Weed Technol. 23:513518.

A. J. Woodyard , J. A. Hugie , and D. E. Riechers 2009b. Interactions of mesotrione and atrazine in two weed species with different mechanisms for atrazine resistance. Weed Sci. 57:369378.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 57 *
Loading metrics...

* Views captured on Cambridge Core between 20th January 2017 - 22nd September 2017. This data will be updated every 24 hours.