Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T21:59:27.542Z Has data issue: false hasContentIssue false

Negative Cross-Resistance of Acetolactate Synthase Inhibitor–Resistant Kochia (Kochia scoparia) to Protoporphyrinogen Oxidase– and Hydroxyphenylpyruvate Dioxygenase–Inhibiting Herbicides

Published online by Cambridge University Press:  20 January 2017

Hugh J. Beckie*
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
Eric N. Johnson
Affiliation:
AAFC, Scott Research Farm, P.O. Box 10, Scott, Saskatchewan S0K 4A0, Canada
Anne Légère
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
*
Corresponding author's E-mail: hugh.beckie@agr.gc.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This greenhouse experiment examined the response of homozygous susceptible and acetolactate synthase (ALS) inhibitor–resistant plants from six Canadian kochia accessions with the Pro197 or Trp574 mutation to six alternative herbicides of different sites of action. The null hypothesis was ALS-inhibitor–resistant and –susceptible plants from within and across accessions would respond similarly to herbicides of different sites of action. This hypothesis was accepted for all accessions except that of MBK2 with the Trp574 mutation. Resistant plants of that accession were 80, 60, and 50% more sensitive than susceptible plants to pyrasulfotole, mesotrione (hydroxyphenylpyruvate dioxygenase [HPPD] inhibitors), and carfentrazone (protoporphyrinogen oxidase [PPO] inhibitor), respectively. However, no differential dose response between resistant and susceptible plants of this kochia accession to bromoxynil, fluroxypyr, or glyphosate was observed. A previous study had found marked differences in growth and development between resistant and susceptible plants of this accession, but not of the other accessions examined in this experiment. Negative cross-resistance exhibited by resistant plants of accession MBK2 to PPO and HPPD inhibitors in this experiment may be a pleiotropic effect related to the Trp574 mutation.

Este experimento de invernadero examinó la respuesta a seis herbicidas alternativos con diferentes sitios de acción de plantas de seis accesiones canadienses de Kochia scoparia, homocigotas susceptibles y resistentes a herbicidas inhibidores de acetolactate synthase (ALS) con las mutaciones Pro197 o Trp574. La hipótesis nula fue que plantas resistentes y susceptibles a inhibidores de ALS dentro y entre accesiones responderían en forma similar a herbicidas con diferentes sitios de acción. Esta hipótesis fue aceptada para todas las accesiones excepto MBK2 con la mutación Trp574. Comparadas con las plantas susceptibles, las plantas resistentes de esta accesión fueron 80, 60 y 50% más sensibles a pyrasulfotole, mesotrione (inhibidores de hydroxyphenylpyruvate dioxygenase [HPPD]) y carfentrazone (inhibidor de protoporphyrinogen oxidase [PPO]), respectivamente. Sin embargo, no se observó una respuesta a dosis diferenciada entre plantas resistentes y susceptibles de esta accesión de K. scoparia al ser tratadas con bromoxynil, fluroxypyr o glyphosate. Un estudio previo había encontrado diferencias marcadas en crecimiento y desarrollo entre plantas resistentes y susceptibles de esta accesión, pero no en las otras accesiones examinadas en este experimento. La resistencia cruzada-negativa que mostraron las plantas resistentes de la accesión MBK2 a inhibidores PPO y HPPD en este experimento podría ser un efecto pleiotrópico relacionado a la mutación Trp574.

Type
Notes
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

References

Literature Cited

Beckie, H. J. and Tardif, F. J. 2012. Herbicide cross resistance in weeds. Crop Prot. 35:1528.Google Scholar
Beckie, H. J., Warwick, S. I., Sauder, C. A., Lozinski, C., and Shirriff, S. 2011. Occurrence and molecular characterization of acetolactate synthase (ALS) inhibitor-resistant kochia (Kochia scoparia) in western Canada. Weed Technol. 25:170175.Google Scholar
Dabaan, M. E. and Garbutt, K. 1997. Herbicide cross-resistance in atrazine-resistant velvetleaf (Abutilon theophrasti) and redroot pigweed (Amaranthus retroflexus). Pages 505510. In Brown, H., Cussans, G. W., Devine, M. D., Duke, S. O., Fernandez-Quintanilla, C., Helweg, A., Labrada, R. E., Landes, M., Kudsk, P., and Streibig, J. C., eds. Proceedings of the Second International Weed Control Congress, Copenhagen, Denmark. Flakkebjerg, Slagelse, Denmark Department of Weed Control and Pesticide Ecology.Google Scholar
Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonylurea-resistant Kochia scoparia L. accessions is associated with elevated seed levels of branched-chain amino-acids. Weed Sci. 41:1822.Google Scholar
Friesen, L. F., Beckie, H. J., Warwick, S. I., and Van Acker, R. C. 2009. The biology of Canadian weeds. 138. Kochia scoparia (L.) Schrad. Can. J. Plant Sci. 89:141167.Google Scholar
Gadamski, G., Ciarka, D., Gressel, J., and Gawronski, S. W. 2000. Negative cross-resistance in triazine-resistant biotypes of Echinochloa crus-galli and Conzya canadensis . Weed Sci. 48:176180.Google Scholar
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research. 2nd ed. New York Wiley. 680 p.Google Scholar
Gressel, J. 2002. Molecular Biology of Weed Control. New York Taylor & Francis. 504 p.Google Scholar
Jordon, N., Kelrick, M., Brooks, J., and Kinerk, W. 1999. Biorational management tactics to select against triazine-resistant Amaranthus hybridus: a field trial. J. Appl. Ecol. 36:123132.Google Scholar
Koutsoyiannis, A. 1977. Theory of Econometrics. 2nd ed. London, UK MacMillan Education. Pp. 8191.Google Scholar
Leeson, J. Y., Thomas, A. G., Hall, L. M., Brenzil, C. A., Andrews, T., Brown, K. R., and Van Acker, R. C. 2005. Prairie Weed Surveys of Cereal, Oilseed and Pulse Crops from the 1970s to the 2000s. Saskatoon, Saskatchewan Weed Survey Series Publ. 05-1, Agriculture and Agri-Food Canada. 395 p.Google Scholar
Légère, A., Beckie, H. J., Hrynewich, B., Lozinski, C., Johnson, E., Warwick, S. I., and Stevenson, F. C. 2010a. Kochia growth according to ALS (AHAS) mutation (Pro197, Trp574) and geographical origin (AB, SK, MB). Can. Weed Sci. Soc. Abstr. http://www.weedscience.ca/annual-meeting/archives. Accessed: February 2012.Google Scholar
Légère, A., Beckie, H. J., Hrynewich, B., Lozinski, C., Johnson, E., Warwick, S. I., and Stevenson, F. C. 2010b. Kochia with ALS (AHAS) mutations: the Manitoba conundrum. Can. Weed Sci. Soc. Abstr. http://www.weedscience.ca/annual-meeting/archives. Accessed: February 2012.Google Scholar
Morrison, I. N. and Devine, M. D. 1994. Herbicide resistance in the Canadian prairie provinces: five years after the fact. Phytoprotection 75(Suppl.):516.Google Scholar
Parks, R. J., Curran, W. S., Roth, G. W., Hartwig, N. L., and Calvin, D. D. 1996. Herbicide susceptibility and biological fitness of triazine-resistant and susceptible common lambsquarters (Chenopodium album). Weed Sci. 44:517522.Google Scholar
Poston, D. H., Hirata, C. M., and Wilson, H. P. 2002. Response of acetolactate synthase from imidazolinone-susceptible and -resistant smooth pigweed to ALS inhibitors. Weed Sci. 50:306311.Google Scholar
Poston, D. H., Wu, J., Hatzios, K. K., and Wilson, H. P. 2001. Enhanced sensitivity to cloransulam-methyl in imidazolinone-resistant smooth pigweed. Weed Sci. 49:711716.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61:317347.Google Scholar
SAS. 1999. SAS/STAT User's Guide. Version 8. Cary, NC Statistical Analysis Systems Institute. 1243 p.Google Scholar
Saskatchewan Ministry of Agriculture. 2012. Guide to Crop Protection: Weeds, Plant Diseases, Insects. Regina, SK Saskatchewan Ministry of Agriculture. 479 p. http://www.agriculture.gov.sk.ca/Guide_to_Crop_Protection. Accessed: Jan, 2012.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Steel, G. D. and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd ed. New York McGraw-Hill. 633 p.Google Scholar
Tardif, F. J., Rajcan, I., and Costea, M. 2006. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alternations and reduces fitness in Amaranthus powellii . New Phytol. 169:251264.Google Scholar
Thompson, C. R., Thill, D. C., and Shafii, B. 1994a. Growth and competitiveness of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42:5056.Google Scholar
Thompson, C. R., Thill, D. C., and Shafii, B. 1994b. Germination characteristics of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42:172179.Google Scholar
Vila-Aiub, M. M., Neve, P., and Powles, S. B. 2009. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 184:751767.Google Scholar
Warwick, S. I., Xu, R., Sauder, C., and Beckie, H. J. 2008. Acetolactate synthase target-site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparia). Weed Sci. 56:797806.Google Scholar
Yoshimura, Y., Beckie, H. J., and Matsuo, K. 2006. Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ. Biosaf. Res. 5:6775.Google Scholar