Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T06:59:49.769Z Has data issue: false hasContentIssue false

Overcoming Weed Management Challenges in Cover Crop–Based Organic Rotational No-Till Soybean Production in the Eastern United States

Published online by Cambridge University Press:  20 January 2017

Steven B. Mirsky*
Affiliation:
Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705
Matthew R. Ryan
Affiliation:
Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14850
John R. Teasdale
Affiliation:
Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705
William S. Curran
Affiliation:
Department of Plant Science, The Pennsylvania State University, University Park, PA 16802
Chris S. Reberg-Horton
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
John T. Spargo
Affiliation:
Stockbridge School of Agriculture, University of Massachusetts, 682 North Pleasant St., Amherst, MA 01003
M. Scott Wells
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Clair L. Keene
Affiliation:
Department of Plant Science, The Pennsylvania State University, University Park, PA 16802
Jeff W. Moyer
Affiliation:
The Rodale Institute, Kutztown, PA 19530
*
Corresponding author's E-mail: steven.mirsky@ars.usda.gov

Abstract

Cover crop–based organic rotational no-till soybean production has attracted attention from farmers, researchers, and other agricultural professionals because of the ability of this new system to enhance soil conservation, reduce labor requirements, and decrease diesel fuel use compared to traditional organic production. This system is based on the use of cereal rye cover crops that are mechanically terminated with a roller-crimper to create in situ mulch that suppresses weeds and promotes soybean growth. In this paper, we report experiments that were conducted over the past decade in the eastern region of the United States on cover crop–based organic rotational no-till soybean production, and we outline current management strategies and future research needs. Our research has focused on maximizing cereal rye spring ground cover and biomass because of the crucial role this cover crop plays in weed suppression. Soil fertility and cereal rye sowing and termination timing affect biomass production, and these factors can be manipulated to achieve levels greater than 8,000 kg ha−1, a threshold identified for consistent suppression of annual weeds. Manipulating cereal rye seeding rate and seeding method also influences ground cover and weed suppression. In general, weed suppression is species-specific, with early emerging summer annual weeds (e.g., common ragweed), high weed seed bank densities (e.g. > 10,000 seeds m−2), and perennial weeds (e.g., yellow nutsedge) posing the greatest challenges. Due to the challenges with maximizing cereal rye weed suppression potential, we have also found high-residue cultivation to significantly improve weed control. In addition to cover crop and weed management, we have made progress with planting equipment and planting density for establishing soybean into a thick cover crop residue. Our current and future research will focus on integrated multitactic weed management, cultivar selection, insect pest suppression, and nitrogen management as part of a systems approach to advancing this new production system.

La producción orgánica de soya en sistemas de rotación con cero labranza basados en cultivos de cobertura, ha atraído la atención de productores, investigadores y otros profesionales agrícolas por la habilidad de este nuevo sistema de mejorar la conservación del suelo, reducir los requerimientos de mano de obra y disminuir el uso de combustible diesel en comparación con la producción orgánica tradicional. Este sistema está basado en el uso de centeno como cultivo de cobertura el cual es terminado mecánicamente con un rodillo de cuchillas para crear una cobertura de residuos in situ que suprime malezas y promueve el crecimiento de la soya. En este artículo, reportamos experimentos que fueron realizados durante la década pasada en la región este de los Estados Unidos sobre la producción orgánica de soya en sistemas de rotación con cero labranza basados en cultivos de cobertura, y delineamos las estrategias actuales de manejo y las necesidades futuras de investigación. Nuestra investigación se ha enfocado en maximizar la cobertura y la biomasa del centeno de primavera debido al papel crucial que este cultivo de cobertura juega en la supresión de malezas. La fertilidad del suelo y el momento de siembra y término del centeno afectan la producción de biomasa, y estos factores pueden ser manipulados para alcanzar niveles mayores a 8,000 kg ha−1, el cual es el umbral identificado para la supresión consistente de malezas anuales. Manipular la densidad y métodos de siembra también influencia la cobertura del suelo y la supresión de malezas. En general, la supresión de malezas es específica a la especie, siendo las malezas anuales de verano que emergen temprano (e.g. Ambrosia artemisiifolia), los banco de semillas con altas densidades (e.g. >10,000 semillas m−2), y las malezas perennes (e.g. Cyperus esculentus) los mayores retos. Debido a los retos de maximizar el potencial de supresión de malezas del centeno, hemos encontrado que el cultivar con altos residuos también puede mejorar el control de malezas significativamente. Adicionalmente al cultivo de cobertura y el manejo de malezas, hemos progresado con el equipo y la densidad de siembra para el establecimiento de la soya en capas gruesas de residuos de cultivos de cobertura. Nuestra investigación actual y futura se centrará en el manejo integrado de malezas multitáctico, la selección de cultivares, la supresión de plagas insectiles, y el manejo del nitrógeno como parte de un enfoque de sistemas para el avance de este nuevo sistema de producción.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adeli, A., Tewolde, H., Jenkins, J. N., and Rowe, D. E. 2011. Cover crop use for managing broiler litter applied in the fall. Agron. J. 103 :200210.Google Scholar
Anser, G. P. and Townsend, A. R. 1997. The decoupling of terrestrial carbon and nitrogen cycles. BioScience 47 :226234.Google Scholar
Ashford, D. L. and Reeves, D. W. 2003. Use of a mechanical roller crimper as an alternative kill method for cover crop. Am. J. Alt. Agric. 18 :3745.Google Scholar
Barnes, J. P. and Putnam, A. R. 1983. Rye residues contribute weed suppression in no-tillage cropping systems. J. Chem. Ecol. 9 :10451057.Google Scholar
Barnes, J. P. and Putnam, A. R. 1987. Role of benzoxazinones in allelopathy by rye. J. Chem. Ecol. 13 :889906.Google Scholar
Bernstein, E. R., Posner, J. L., Stoltenberg, D. E., and Hedtcke, J. L. 2011. Organically managed no-tillage rye-soybean systems: agronomic, economic, and environmental assessment. Agron. J. 103 :11691179.Google Scholar
Blackshaw, R. E., Molnar, L. J., and Janzen, H. H. 2004. Nitrogen fertilizer timing and application method affect weed growth and competition with spring wheat. Weed Sci. 52 :614622.Google Scholar
Bowman, G. 1997. Steel in the Field: A Farmer's Guide to Weed-Management Tools. Beltsville, MD : Sustainable Agriculture Network.Google Scholar
Boyd, N. S., Brennan, E. B., Smith, R. F., and Yokota, R. 2009. Effect of seeding rate and planting arrangement on rye cover crop and weed growth. Agron. J. 101 :4751.Google Scholar
Burgos, N. R., Talbert, R. E., and Mattice, J. D. 1999. Cultivar and age differences in the production of allelochemicals by Secale cereale . Weed Sci. 47 :481485.Google Scholar
Clark, A. 2007. Managing cover crop profitably. 3rd edition. Beltsville, MD : Sustainable Agriculture Network.Google Scholar
Creamer, N. G. and Dabney, S. M. 2002. Killing cover crops mechanically: review of recent literature and assessment of new research results. Am. J. Alt. Agric. 17 :3240.Google Scholar
Cavigelli, M. A., Mirsky, S. B., Teasdale, J. R., Spargo, J. T., and Doran, J. 2013. Organic management systems to enhance ecosystem services. Renew. Agric. Food Syst. In press.Google Scholar
Cavigelli, M. A., Teasdale, J. R., and Conklin, A. E. 2008. Long-term agronomic performance of organic and conventional field crops in the mid-Atlantic region. Agron. J. 100 :785794.Google Scholar
Dabney, S. M., Delgado, J. A., Meisinger, J. J., Schomberg, H. H., Liebig, M. A., Kaspar, T., Mitchell, J., and Reeves, W. 2010. Using cover crops and cropping systems for nitrogen management. Pages 231282 in Delgado, J. A. and Follett, R. F., eds. Advances in Nitrogen Management for Water Quality. Ankeny, IA : SWCS.Google Scholar
Davis, A. 2010. Cover crop roller-crimper contributes to weed management in no-till soybean. Weed Sci. 58 :300309.Google Scholar
Decourtye, A., Mader, E., and Desneux, N. 2010. Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41 :264277.Google Scholar
Delate, K., Cwach, D., and Chase, C. 2012. Organic no-till system effects on organic soybean, corn, and tomato production and economic performance in Iowa. Renew Agric. Food Syst. 27 (special issue 01):4959.Google Scholar
Derpsch, R., Roth, C. H., Sidiras, N., and Köpke, U. 1991. Controle da erosão no Paraná, Brazil: Sistemas de cobertura do solo, plantio directo e prepare conservacionista do solo. Eschborn, Germany : Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH.Google Scholar
Facelli, J. M. and Pickett, S.T.A. 1991. Plant litter: light interception and effects on an old-field plant community. Ecology 72 :10241031.Google Scholar
Franzluebbers, A. J. 2002. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 66 :197205.Google Scholar
Franzluebbers, A. J. 2005. Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA. Soil Tillage Res. 83 :120147.Google Scholar
Frey, S. D., Elliott, E. T., Paustian, K., and Peterson, G. A. 2000. Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biol. Biochem. 32 :689698.Google Scholar
Graham, R., Geytenbeek, P., and Radcliffe, B. 1983. Responses of triticale, wheat, rye and barley to nitrogen fertilizer. Aust. J. Exp. Agric. 23 :7379.Google Scholar
Hammond, R. B. and Cooper, R. L. 1993. Interaction of planting times following the incorporation of a living, green cover crop and control measures on seedcorn maggot populations in soybean. Crop Prot. 12 :539543.Google Scholar
Hargrove, W. L. and Frye, W. W. 1987. The need for legume cover crops in conservation tillage production. Pages 15 in Power, J. F., ed. The Role of Legumes in Conservation Tillage Systems. Ankeny, IA : Soil Conservation Society of America.Google Scholar
Henson, J. F. and Jordan, L. S. 1982. Wild oat (Avena fatua) competition with wheat (Triticum aestivum and T. turgidum durum) for nitrate. Weed Sci. 30 :297300.Google Scholar
Hock, S. M., Lindquist, J. L., Martin, A. R., and Knezevic, S. Z. 2006. Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices. Weed Sci. 54 :3846.Google Scholar
Kornecki, T. S., Price, A. J., and Raper, R. L. 2006. Performance of different roller designs in terminating rye cover crop and reducing vibration. Appl. Eng. Agric. 22 :633641.Google Scholar
Kornecki, T. S., Price, A. J., Raper, R. L., and Arriaga, F. J. 2009. New roller crimper concepts for mechanical termination of cover crops. Renew. Agric. Food Syst. 24 :165173.Google Scholar
Kornecki, T. S., Raper, R. L., Arriaga, F. J., Schwab, E. B., and Bergtold, J. S. 2009. Impact of rye rolling direction and different no-till row cleaners on cotton emergence and yield. Trans. ASABE 52 :383391.Google Scholar
Macías, F. A., Marín, D., Oliveros-Bastidas, A., Castellano, D., Simonet, A. M., and Molinillo, J. M. G. 2005. Structure-activity relationship studies of benzoxazinones, their degradation products, and analogues. Phytotoxicity on standard target species. J. Agric. Food Chem. 53 :538548.Google Scholar
Mallory, E.B. and Griffin, T.S. 2007. Impacts of soil amendment history on nitrogen availability from manure and fertilizer. Soil Sci. Soc. Am. J. 71 :964973.Google Scholar
Mirsky, S. B., Curran, W. S., Mortensen, D. A., Ryan, M. R., and Shumway, D. L. 2009. Control of cereal rye with a roller/crimper as influenced by cover crop phenology. Agron. J. 101 :15891596.Google Scholar
Mirsky, S. B., Curran, W. S., Mortensen, D. A., Ryan, M. R., and Shumway, D. L. 2011. Timing of cover crop management effects on weed suppression in no-till planted soybean using a roller-crimper. Weed Sci. 59 :380389.Google Scholar
Mirsky, S. B., Ryan, M. R., Curran, W. S., Teasdale, J. R., Maul, J., Spargo, J. T., Moyer, J., Grantham, A. M., Weber, D., Way, T. R., and Camargo, G. G. 2012. Conservation tillage issues: cover crop-based organic rotational no-till grain production in the mid-Atlantic region, USA. Renew. Agric. Food Syst 27 :3140.Google Scholar
Mischler, R. A., Curran, W. S., Duiker, S. W., and Hyde, J. A. 2010. Use of a rolled-rye cover crop for weed suppression in no-till soybeans. Weed Technol. 24 :253261.Google Scholar
Mohler, C. L. 1996. Ecological basis for the cultural control of annual weeds. J. Prod. Agric. 9 :468474.Google Scholar
Mohler, C. L. and Teasdale, J. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 33 :487499.Google Scholar
Moore, M. J., Gillespie, T. J., and Swanton, C. J. 1994. Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine max) development. Weed Technol. 8 :512518.Google Scholar
[NASS] National Agriculture Statistics Service. 2012. http://www.nass.usda.gov/Data_and_Statistics/Quick_Stats/index.asp. Accessed June 3, 2012.Google Scholar
Nord, E. A., Curran, W. S., Mortensen, D. A., Mirsky, S. B., and Jones, B. P. 2011. Integrating multiple tactics for managing weeds in high residue no-till soybean. Agron. J. 103 :15421551.Google Scholar
Nord, E. A., Ryan, M. R., Curran, W. S., Mortensen, D. A., and Mirsky, S. B. 2012. Weed emergence periodicity mediates interaction between management system and planting date in no-till planted soybean. Weed Sci. 60:624633.Google Scholar
Parsch, L. D., Keisling, T. C., Sauer, P. A., Oliver, L. R., and Crabtree, N. S. 2001. Economic analysis of conservation and conventional tillage cropping systems on clayey soil in eastern Arkansas. Agron. J. 93 :12961304.Google Scholar
Pesant, A. R., Dionne, J. L., and Genest, J. 1987. Soil and nutrient losses in surface runoff from conventional and no-till corn systems. Can. J. Soil Sci. 67 :835843.Google Scholar
Phelan, L., Stinner, D., Nacci, C., and McCartney, D. 2008. Application of the niche concept to organic weed management. Pages 2930 in Proceedings of the Midwest Organic Research Symposium. La Crosse, WI : Organic Farming Research Foundation.Google Scholar
Power, J. F. and Doran, J. W. 1984. Nitrogen use in organic farming. Pages 585–568 in Hauck, R. D., ed. Nitrogen in Crop Production. Madison, WI : ASA, CSSA, and SSSA.Google Scholar
Price, A. J., Arriaga, F. J., Raper, R. L., Balkcom, K. S., Kornecki, T. S., and Reeves, D. W. 2009. Comparison of mechanical and chemical winter cereal cover crop termination systems and cotton yield in conservation agriculture. Cotton Sci. 13 :238245.Google Scholar
Price, A. J., Balkcom, K. S., and Culpepper, S. A. 2011. Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. J. Soil. Water Conserv. 66 :265275.Google Scholar
Qi, Z. and Helmers, M. J. 2009. Soil water dynamics under winter rye cover crop in central Iowa. Vadose Zone J. 9 :5360.Google Scholar
Reberg-Horton, S. C., Burton, J. D., Danehower, D. A., Ma, G., Monks, D. W., Murphy, J. P., Ranells, N. N., Williamson, J. D., and Creamer, N. G. 2005. Changes over time in the allelochemical content of ten cultivars of rye. J. Chem. Ecol. 31 :179193.Google Scholar
Reberg-Horton, S. C., Grossman, J., Kornecki, T. S., Meijer, A. D., Price, A. J., Place, G. T., and Webster, T. M. 2012. Utilizing cover crop mulches to reduce tillage in organic systems in the Southeast. Renew. Agric. Food Syst. 27 :4148.Google Scholar
Reeves, D. W. 2003. A Brazilian model for no-tillage cotton production adapted to the southeastern USA. Pages 372374 in Proceedings of the Second World Congress on Conservation Agriculture. Athens, Georgia.Google Scholar
Rice, C. P., Cai, G., and Teasdale, J. R. 2012. Fate of benzoxazinoids in soil treated with rye cover crop. J. Agric. Food Chem. 60 :44714479.Google Scholar
Ryan, M. R. 2010. Energy Usage, Greenhouse Gases, and Multi-Tactical Weed Management in Organic Rotational No-Till Cropping Systems. Ph.D. Dissertation. University Park, PA: The Pennsylvania State University.Google Scholar
Ryan, M. R., Curran, W. S., Grantham, A. M., Hunsberger, L. K., Mirsky, S. B., Mortensen, D. A., Nord, E. A., and Wilson, D. O. 2011a. Effects of seeding rate and poultry litter on weed suppression from a rolled cereal rye cover crop. Weed Sci. 59 :438444.Google Scholar
Ryan, M. R., Mirsky, S. B., Mortensen, D. A., Teasdale, J. R., and Curran, W. S. 2011b. Potential synergistic effects of cereal rye biomass and soybean planting density on weed suppression. Weed Sci. 59 :238246.Google Scholar
Ruffo, M. L. and Bollero, G. A. 2003. Modeling rye and hairy vetch residue decomposition as a function of degree days and decomposition days. Agron. J. 95 : 900997.Google Scholar
Scharf, P. C. and Alley, M. M. 1993. Spring nitrogen on winter-wheat. II. A flexible multicomponent rate recommendation system. Agron. J. 85 :11861192.Google Scholar
Shipley, P. R., Messinger, J. J., and Decker, A. M. 1992. Conserving residual corn fertilizer nitrogen with winter cover crops. Agron. J. 84 :869876.Google Scholar
Snapp, S. S., Swinton, S. M., Labarta, R., Mutch, D., Black, J. R., Leep, R., Nyiraneza, J., and O'Neil, K. 2005. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 97 :322332.Google Scholar
Spargo, J. S., Alley, M. M., Follett, R. F., and Wallace, J. V. 2008. Soil carbon sequestration with continuous no-till management of grain cropping systems in the Virginia Coastal Plain. Soil Tillage Res. 100 :133144.Google Scholar
Spargo, J. T., Cavigelli, M. A., Mirsky, S. B., Maul, J. E., and Meisinger, J. J. 2011. Mineralizable soil nitrogen and labile soil organic matter in diverse long-term cropping systems. Nutr. Cycl. Agroecosyst. 90 :253266.Google Scholar
Teasdale, J. R., Coffman, C. B., and Mangum, R. W. 2007. Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 99 :12971305.Google Scholar
Teasdale, J. R., Mangum, R. W., Radhakrishnan, J., and Cavigelli, M. A. 2004. Weed seedbank dynamics in three organic farming crop rotations. Agron. J. 96 :14291435.Google Scholar
Teasdale, J. R. and Mohler, C. L. 1993. Light transmittance, soil–temperature, and soil–moisture under residue of hairy vetch and rye. Agron. J. 85 :673680.Google Scholar
Teasdale, J. R. and Mohler, C. L. 2000. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 48 :385392.Google Scholar
Teasdale, J. R., Rice, C. P., Cai, G., and Magnum, R. W. 2012. Expression of allelopathy in the soil environment: soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue. J. Plant Ecol. http://dx.doi.org/10.1007/s11258-012-0057-x.Google Scholar
Teasdale, J. R. and Rosecrance, R. C. 2003. Mechanical versus herbicidal strategies for killing a hairy vetch cover crop and controlling weeds in minimum-tillage corn production. Am. J. Alt. Agric. 18 :95102.Google Scholar
Tungate, K. D., Burton, M. G., Susko, D. J., Sermons, S. M., and Rufty, T. W. 2006. Altered weed reproduction and maternal effects under low-nitrogen fertility. Weed Sci. 54 :847853.Google Scholar
U.S. Environmental Protection Agency. 2007. Mid-Atlantic Water: Basic Information about Agriculture. http://www.epa.gov/reg3wapd/Agriculture/basicinfoaboutag.html. Accessed June 22, 2011.Google Scholar
Wagger, M. G., Cabrera, M. L., and Ranells, N. N. 1998. Nitrogen and carbon cycling in relation to cover crop residue quality. J. Soil Water Conserv. 53 :214218.Google Scholar
Ward, M. J., Ryan, M. R., Curran, W. S., Barbercheck, M. E., and Mortensen, D. A. 2011. Cover crops and disturbance influence activity-density of Amara aenea and Harpalus pensylvanicus (Coleoptera: Carabidae). Weed Sci. 59 :7681.Google Scholar
Weisz, R., Crozier, C. R., and Heiniger, R. W. 2001. Optimizing nitrogen application timing in no-till soft red winter wheat. Agron. J. 93 :435442.Google Scholar
Wells, M. S., Reberg-Horton, S. C., and Smith, A. N. 2010. Nitrogen immobilization in a rye (Secale cereale L.) roll-killed system. Pages 106114 in Proceedings of the International Annual Meetings of the ASA-CSSA-SSSA. Madison. WI: ASA-CSSA -SSSA.Google Scholar
Whitehouse, S. E., DiTommaso, A., Drinkwater, L. E., and Mohler, C. L. 2009. Changes in weed vigor and growth in response to carbon and nitrogen ratio manipulation. Page 47 in Proceedings of the Sixty-Third Annual Meeting of the Northeastern Weed Science Society. Fredericksburg, PA : Northeastern Weed Science Society.Google Scholar
Winsten, J. R., Kerchner, C. D., Richardson, A., Lichau, A., and Hyman, J. M. 2010. Trends in the Northeast dairy industry: large-scale modern confinement feeding and management-intensive grazing. J. Dairy Sci. 93 :17591769.Google Scholar
Wu, H., Pratley, J., Lemerle, D., and Haig, T., 2000. Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual rye grass (Lolium rigidum) by the equal-compartment- agar method. Austral. J. Agric. Res. 51 :937944 Google Scholar