Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T13:27:51.991Z Has data issue: false hasContentIssue false

The Potential for Pyroxasulfone to Selectively Control Resistant and Susceptible Rigid Ryegrass (Lolium rigidum) Biotypes in Australian Grain Crop Production Systems

Published online by Cambridge University Press:  20 January 2017

Michael J. Walsh*
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
Tarnya M. Fowler
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
Bronwyn Crowe
Affiliation:
School of Agricultural and Resource Economics, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley, WA 6009, Australia
Toshihiro Ambe
Affiliation:
Kumiai Chemical Industry, 4-26 Ikenohata 1-chome, Taitoh, Tokyo, 110-8782, Japan
Stephen B. Powles
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
*
Corresponding author's E-mail: michael.walsh@uwa.edu.au

Abstract

The widespread evolution of resistance in rigid ryegrass populations to the highly effective, in-crop, selective herbicides used within southern Australian grain-crop production systems has severely diminished the available herbicide resource. A new PRE grass-selective herbicide, pyroxasulfone, may offer Australian grain producers a new option for rigid ryegrass control in wheat crops. The efficacy and level of selectivity of rigid ryegrass control with pyroxasulfone was investigated for a range of annual crop species in potted-plant, dose–response studies. In comparison with other currently available PRE herbicides, pyroxasulfone provided effective control of both resistant and susceptible rigid ryegrass populations. Additionally, control of these populations was achieved at rates that had little or no effect on the growth and survival of wheat. This crop was also the most tolerant of cereal species, with triticale, barley, and oat being more injured at higher pyroxasulfone rates than wheat was. In general though, pulse-crop species were found to be more tolerant of high pyroxasulfone rates than cereal-crop species. There were subtle effects of soil type on the efficacy of pyroxasulfone, where higher rates were required to achieve effective control on soils with higher clay or organic matter contents. The ability of pyroxasulfone to selectively control resistant and susceptible rigid ryegrass populations as identified in these studies clearly indicate the potential for widespread use and success of this herbicide in Australian cropping systems.

La evolución generalizada de resistencia en poblaciones de Lolium rigidum a los herbicidas selectivos y altamente efectivos, aplicados al cultivo y utilizados en los sistemas de producción de grano del sur de Australia, ha disminuido severamente los recursos disponibles de herbicidas. El pyroxasulfone es un nuevo herbicida PRE selectivo para gramíneas, que puede ofrecer a los productores de grano australianos una nueva opción para el control de Lolium rigidum en el cultivo del trigo. Se investigó la eficacia y el nivel de selectividad de control de Lolium rigidum con pyroxasulfone para diversas especies de cultivos anuales, con estudios dosis-respuesta llevados a cabo con plantas en macetas. En comparación con otros herbicidas PRE actualmente disponibles, el pyroxasulfone proporcionó control efectivo a poblaciones resistentes y susceptibles de Lolium rigidum. Adicionalmente, se logró el control de estas poblaciones a dosis que tuvieron poco o ningún efecto en el crecimiento y supervivencia del trigo. Este cultivo fue también el más tolerante de los cereales, con triticale, cebada y avena sufriendo mayor daño a dosis mayores de pyroxasulfone que el trigo. En general, los cultivos de leguminosas resultaron ser más tolerantes a altas dosis de pyroxasulfone que los cereales. Hubo leves efectos en cuanto al tipo de suelo en la eficacia de pyroxasulfone, donde se requirieron dosis más altas para lograr el control efectivo en suelos con más alto contenido de arcilla o materia orgánica. La habilidad de pyroxasulfone para controlar selectivamente poblaciones resistentes y susceptibles de Lolium rigidum como se identificó en este estudio, claramente indica que hay potencial para el uso generalizado y el éxito de este herbicida en sistemas de cultivos en Australia.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

[BOM] Bureau of Meteorology 2010. Weather and Climate Statistics. Available at http://www.bom.gov.au. Accessed: September 2010.Google Scholar
Boutsalis, P., Preston, C., and Gill, G. 2008. Current levels of herbicide resistance in broadacre farming across southern Australia. Page. 83. in. Proceedings of the 16th Australian Weeds Conference. Brisbane, Australia Weed Society of Queensland.Google Scholar
Broster, J. C. and Pratley, J. 2006. A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Aust. J. Exp. Agric 46:11511160.Google Scholar
Chauhan, B. S., Gill, G. S., and Preston, C., C. 2007. Effect of seeding systems and dinitroaniline herbicides on emergence and control of rigid ryegrass (Lolium rigidum) in wheat. Weed Technol. 21:5358.Google Scholar
Christopher, J. T., Powles, S. B., and Holtum, J. A. M. 1992. Resistance to acetolactate synthase inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol 100:19091913.Google Scholar
Christopher, J. T., Powles, S. B., Holtum, J. A. M., and Liljegren, D. R. 1991. Cross-resistance to herbicides in annual ryegrass (Lolim rigidum), II: chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiol 95:10361045.Google Scholar
Dear, B. S., Sandral, G. A., and Wilson, B. C. D. 2006. Tolerance of perennial pasture grass seedlings to PRE- and POST-emergent grass herbicides. Aust. J. Exp. Agric 46:637644.Google Scholar
D'Emden, F. H. and Llewellyn, R. S. 2006. No-tillage adoption decisions in southern Australian cropping and the role of weed management. Aust. J. Exp. Agric 46:563569.Google Scholar
D'Emden, F. H., Llewellyn, R. S., and Burton, M. P. 2008. Factors influencing adoption of conservation tillage in Australian cropping regions. Aust. J. Agric. Res. Econ 52:169182.Google Scholar
Dyer, C. D., Bauman, T. T., and White, M. D. 2005. Determination of the soil persistence of KIH-485, acetochlor, dimethenamid and S-metolachlor. Proc. North Central Weed Sci. Soc 59:63.Google Scholar
Geier, P. W., Stahlman, P. W., and Frihauf, J. C. 2009. KIH-485 and s-metolachlor efficacy comparisons in conventional and no-tillage corn. Weed Technol. 20:622626.Google Scholar
Kloot, P. 1983. The genus Lolium in Australia. Aust. J. Bot 31:421435.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Porpiglia, P. J. 2009. Dose response curves of KIH-485 for PRE-emergence weed control in corn. Weed Technol. 23:3439.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol. 21:840848.Google Scholar
McAlister, F. M., Holtum, J. A. M., and Powles, S. B. 1995. Dintroaniline herbicide resistance in rigid ryegrass (Lolium rigidum). Weed Sci. 43:5562.Google Scholar
Owen, M., Walsh, M. J., Llewellyn, R., and Powles, S. B. 2007. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res 58:711718.Google Scholar
Porpiglia, P. J., Nakatani, M., and Ueno, R. 2005. KIH-485: a new broad-spectrum herbicide. Weed Sci. Soc. Am. Abstr 45:314.Google Scholar
Preston, C. and Powles, S. B. 1998. Amitrole inhibits diclofop metabolism and synergises diclofop-methyl in a diclofop-methyl resistant biotype of Lolium rigidum . Pestic. Biochem. Physiol. 62:179189.Google Scholar
Ritter, R. L., Membere, H., and Porpiglia, P. J. 2006. Field investigations with KIH-485 in Maryland. Weed Sci. Soc. Am. Abstr 46:50.Google Scholar
Seefeldt, S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.Google Scholar
Sikkema, P. H., Robinson, D. E., Nurse, R. E., and Soltani, N. 2008. PRE-emergence herbicides for potential use in pinto and small red Mexican bean (Phaseolus vulgaris) production. Crop Prot 27:124129.Google Scholar
Sikkema, P. H., Shropshire, C., and Soltani, N. 2007. Dry bean response to preemergence-applied KIH-485. Weed Technol. 21:230234.Google Scholar
Stewart, C. L., Nurse, R. E., Gillard, C., C. and Sikkema, P. H. 2010. Tolerance of adzuki bean to preplant-incorporated, PRE-emergence, and POST-emergence herbicides in Ontario, Canada. Weed Biol. Manag 10:4047.Google Scholar
Tanetani, Y., Kaku, K., Kawai, K., Fujioka, T., and Shimizu, T. 2009. Action mechanism of a novel herbicide, pyroxasulfone. Pestic. Biochem. Physiol. 95:4755.Google Scholar
Tardif, F. J. and Powles, S. B. 1999. Effect of malathion on resistance to soil-applied herbicides in a population of rigid ryegrass (Lolium rigidum). Weed Sci. 47:258261.Google Scholar
van der Vaart, A. W. 1998. Asymptotic Statistics. Cambridge, UK Cambridge University Press.Google Scholar
Vaughn, S. F. and Gayland, F. S. 1993. Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci. 41:114119.Google Scholar
Vaughn, S. F. and Gayland, F. S. 1996. Synthesis and herbicidal activity of modified monoterpenes structurally similar to cinmethylin. Weed Sci. 44:711.Google Scholar
Watanabe, O., Porpiglia, P. J., Yamaji, Y., and Honda, H. 2006. Residual control with KIH-485. Weed Sci. Soc. Am. Abstr 46:13.Google Scholar
Young, F. L., Gealy, D. R., and Morrow, L. A. 1984. Effect of herbicides on germination and growth of four grass weeds. Weed Sci. 32:489493.Google Scholar